
Reinforcement Learning  
Part 2

Dipendra Misra
Cornell University 

dkm@cs.cornell.edu

https://dipendramisra.wordpress.com/

mailto:dkm@cs.cornell.edu

From previous tutorial

Reinforcement Learning

Agent-Reward-EnvironmentNo supervisionExploration

MDPPolicy

Consistency Equation Optimal Policy Optimality Condition

Bellman Backup Operator Iterative Solution

Interaction with the environment

 reward
 +

 new environment

action

Setup from Lenz et. al. 2014

Scalar reward

Rollout

Setup from Lenz et. al. 2014

.

.

.

a1

a2

an

r1

r2

rn

hs1, a1, r1, s2, a2, r2, s3, · · · an, rn, sni

Setup

st ! st+1

at
rt

e.g.,1$

Policy

⇡(s, a) = 0.9

From previous tutorial

V ⇤
(s) = max

a

X

s0

P a
s,s0{Ra

s,s0 + �V ⇤
(s0)}

V ⇡(s) =
X

a

⇡(s, a)
X

s0

P a
s,s0

�
Ra

s,s0 + �V ⇡(s0)

Bellman’s optimality condition

Bellman’s self-consistency equation

 An optimal policy exists such that:⇡⇤

V ⇡⇤
(s) � V ⇡(s) 8s 2 S,⇡

Solving MDP

To solve an MDP (or RL problem)
is to find an optimal policy

Dynamic Programming Solution

Initialize randomlyV 0

do

until kV t+1 � V tk1 > ✏

V t+1 = TV t

return V t+1

T : V ! V

(TV)(s) = max

a

X

s0

P a
s,s0{Ra

s,s0 + �V (s0)}

From previous tutorial

Reinforcement Learning

Agent-Reward-EnvironmentNo supervisionExploration

MDPPolicy

Consistency Equation Optimal Policy Optimality Condition

Bellman Backup Operator Iterative Solution

Dynamic Programming Solution

Initialize randomlyV 0

do

until kV t+1 � V tk1 > ✏

V t+1 = TV t

return V t+1

Problem?

T : V ! V

(TV)(s) = max

a

X

s0

P a
s,s0{Ra

s,s0 + �V (s0)}

Learning from rollouts

Step 1: gather experience using a behaviour policy

Step2: update value functions of an estimation policy

On-Policy and Off-Policy

On policy methods

behaviour and estimation policy are same

Off policy methods

behaviour and estimation policy can be different

Advantage?

Behaviour Policy

• Encourage exploration of search space

• Epsilon-greedy policy

⇡✏(s, a) =
1� ✏+

✏

|A(s)|

✏

|A(s)|

{ a = argmax

a0
Q(s, a0)

otherwise

Temporal Difference Method

Q⇡(s, a) = E⇡

2

4
X

t�0

�trt+1|s1 = s, a1 = a

3

5

= E⇡

2

4r1 + �

0

@
X

t�0

�trt+2

1

A |s1 = s, a1 = a

3

5

= E⇡ [r1 + �Q⇡(s2, a2) |s1 = s, a1 = a]

Q⇡(s, a) = (1� ↵)Q⇡(s, a) + ↵(r1 + �Q⇡(s2, a2))

combination of monte carlo and dynamic programming

SARSA

Converges w.p.1 to an optimal policy as long as all
state-action pairs are visited infinitely many times and
epsilon eventually decays to 0 i.e. policy becomes greedy.

On or off?

Q-Learning

On or off?For proof of convergence see:  
http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf

Q⇤
(s, a) =

X

s0

P a
s,s0{Ra

s,s0 + �max

a0
Q⇤

(s0, a0)}

Resemblance to Bellman optimality condition

http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf

Summary

• SARSA and Q-Learning

• On vs Off policy. Epsilon greedy policy.

What we learned

Solving Reinforcement Learning

Dynamic Programming Soln.

Bellman Backup Operator

Iterative Solution

SARSA Q-Learning

Temporal Difference Learning

Another Approach

• So far policy is implicitly defined using value functions

• Can’t we directly work with policies

Policy Gradient Methods

• Parameterized policy ⇡✓(s, a)

• Gradient descent. Smoothly evolving policy.

• Obtaining gradient estimator?

• Optimization where max

✓
J(✓) J(✓) = E⇡✓(s,a)

"
X

t

�trt+1

#

On or off?

Finite Difference Method

@J(✓)

@✓i
⇡ J(✓ + ✏ei)� J(✓ � ✏ei)

2✏

✓t+1
i ✓ti + ↵

@J(✓t)

@✓ti

• Easy to implement and works for all policies.

Problem?

Likelihood Ratio Trick

r✓J(✓) =
X

t

R(t)r✓p✓(t)

=

X

t

R(t)p✓(t)r✓ log p✓(t)

= Et⇠p✓(t0)[R(t)r✓ log p✓(t)]

max

✓
J(✓)

J(✓) = Et⇠p✓(t0)[R(t)] =
X

t

R(t)p✓(t)

= Et⇠p✓(t0)[(R(t)� b)r✓ log p✓(t)] 8 b

Reinforce (Multi Step)

r✓J(✓) = E⇡✓(s,a)[r✓ log ⇡✓(s, a)Q
⇡✓(s,a)

(s, a)]

Policy gradient theorem:

initialize ✓

for each episode hs1, a1, r1, s2, a2, r2, s3, · · · an, rn, sni⇠ ⇡✓(s1, a1)

for t 2 {1, n}

✓ ✓ + ↵r✓ log ⇡✓(st, at)vt

vt ⇠ Q⇡
✓ (st, at)

return ✓
content from David Silver

Summary

• SARSA and Q-Learning

• Policy Gradient Methods

• On vs Off policy. Epsilon greedy policy.

What we learned

Solving Reinforcement Learning

Dynamic Programming Soln.

Bellman Backup Operator

Iterative Solution

SARSA Q-Learning

Temporal Difference Learning

Policy Gradient Methods

Finite difference method Reinforce

What we did not cover

• Generalized policy iteration

• Simple monte carlo solution

• TD() algorithm�

• Convergence of Q-learning, SARSA

• Actor-critic method

· · ·

Application

Playing Atari game with Deep RL

State is given by raw images.

Learn a good policy for a given game.

Playing Atari game with Deep RL

Q(s, a, ✓) ⇡ Q⇤(s, a)

Q⇤
(s, a) =

X

s0

P a
s,s0{Ra

s,s0 + �max

a0
Q⇤

(s0, a0)}

= Ra
s,s0 + �max

a0
Q⇤

(s0, a0)

Q(s, a, ✓)

conv + relu
conv + relu
FC + relu

FC

Playing Atari game with Deep RL
Q⇤

(s, a) = Ra
s,s0 + �max

a0
Q⇤

(s0, a0)

Q(s, a, ✓) ! Ra
s,s0 + �max

a0
Q(s0, a0, ✓)

Q(s, a, ✓)

conv + relu
conv + relu
FC + relu

FC

min(Q(s, a, ✓t)�Ra
s,s0 � �max

a0
Q(s0, a0, ✓t�1

))

2

nothing deep about their RL

Playing Atari game with Deep RL

Playing Atari game with Deep RL

break correlation between consecutive datapoints
why replay memory?

Playing Atari game with Deep RL

Why Deep RL is hard

Q⇤
(s, a) =

X

s0

P a
s,s0{Ra

s,s0 + �max

a0
Q⇤

(s0, a0)}

• Recursive equation blows as difference between  
 is smalls, s0

• Too many iterations required for convergence.  
10 million frames for Atari game.

• It may take too long to see a high reward action.

Learning to Search

• It may take too long to see a high reward.

• Ease the learning using a reference policy

• Exploiting a reference policy to search space better

s1 si sn

⇡(s, a) ⇡ref (s, a)

Summary

• SARSA and Q-Learning

• Policy Gradient Methods

• Playing Atari game using deep reinforcement learning

• On vs Off policy. Epsilon greedy policy.

• Why deep RL is hard. Learning to search.

