Reinforcement Learning
Part 2

Dipendra Misra
Cornell University
dkm@cs.cornell.edu

https://dipendramisra.wordpress.com/

mailto:dkm@cs.cornell.edu

From previous tutorial

Reinforcement Learning

— I

Exploration No supervision Agent-Reward-Environment

l

Policy < MDP
Consistency Equation Optimal Policy Optimality Condition

Bellman Backup Operator » |terative Solution

Interaction with the environment

action

new environment Scalar reward

Setup from Lenz et. al. 2014

Rollout

"'an7rn78n>

Setup from Lenz et. al. 2014

Policy

From previous tutorial

An optimal policy 7™ exists such that:

VT (s)>V™(s) VseS,n

Bellman’s selt-consistency equation

VT(s) =Y m(s,a)) Piy {R:y+V7(s)}

Bellman’s optimality condition

V*(s) =max) Pl {R:, +7V(s))

S/

Solving MDP

To solve an MD

2 (or

RL problem)

'S to find an optimal policy

Dynamic Programming Solution

Initialize V° randomly

do
Vil =1V!

until ||V — Ve > €

return Vit!

From previous tutorial

Reinforcement Learning

— I

Exploration No supervision Agent-Reward-Environment

l

Policy < MDP
Consistency Equation Optimal Policy Optimality Condition

Bellman Backup Operator » |terative Solution

Dynamic Programming Solution

Initialize V° randomly

do
Vil =1V!

until [V — V| > e Problem?

return Vit!

_earning from rollouts

Step 1: gather experience using a behaviour policy

Step?2: update value functions of an estimation policy

On-Policy and Off-Policy

On policy methods

behaviour and estimation policy are same

Off policy methods

behaviour and estimation policy can be different

Advantage”

Behaviour Policy

* Encourage exploration of search space

* Epsilon-greedy policy

1—e+ |AES)| a = argmax Q(s,a’)
Te(s,a) =
€

|A(S)| otherwise

Temporal Difference Method

QW(SaGJ) = by ZWt”'“tH\Sl — §,a1 = a
| >0

t>0

=k, |r+7 (Z’Ytrtw) \31 = 5,41 = a

— E7T [Tl + WQW(327CL2) |81 — 5,01 = CL]

Q"(s,a) = (1 =)Q"(s,a) + a(r1 + Q" (s2, az))

combination of monte carlo and dynamic programming

SARSA

Initialize (Q(s.a) arbitrarily
Repeat (for each episode):
Initialize s
Choose a from s using policy derived from @ (e.g.. e-greedy)
Repeat (for each step of episode):
Take action a, observe r, s’
Choose a' from s" using policy derived from Q (e.g.. e-greedy)
Q(s,a) — Q(s,a) + a[r +71Q(s', ') — Q(s,a)]
s+— 8§ a—d;

until s i1s terminal

Converges w.p.1 to an optimal policy as long as all
state-action pairs are visited infinitely many times and
epsilon eventually decays to O I.e. policy becomes greedy.

On or off?

Q-Learning

Initialize (Q(s.a) arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from Q) (e.g.. s-greedy)
Take action a, observe r, s
Q(s.a) — Q(s,a) + a ['I' vmax, Q(s',a") — Qfs, a.:)]

/
cs..‘_OS.;

until s i1s terminal

Resemblance to Bellman optimality condition
Q*(S,CL) — ZP&S/{R;S/ -+ ’}/Hzafo*(S/,a/)}

For proof of convergence see: On or off?

http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf

http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf

summary

 SARSA and Q-Learning

* On vs Off policy. Epsilon greedy policy.

What we learned

Solving Reinforcement Learning

— N\

Dynamic Programming Soln. Temporal Difference Learning

/ N\

Bellman Backup Operator SARSA Q-Learning

|

lterative Solution

Another Approach

e So far policy Is implicitly defined using value functions

 Can'’t we directly work with policies

Policy Gradient Methods

e Parameterized policy ma(s,a)

e Optimization mQaXJ(H) where J(0) = Er,sa) | 770t

* (Gradient descent. Smoothly evolving policy.

* Obtaining gradient estimator?

On or off?

Finite Difference Method

0J(0) J(O+ee;) — J(0 — ee;)

Y
Y

392 2€

. (6")
o0

1

I 0! + o

 Easy to implement and works for all policies.

Problem?

LIkelihood Ratio Trick

Reinforce (Multi Step)

Policy gradient theorem:

VoJ(0) = Er,(s.a)|Vologma(s,a)Q™ (5:0) (5, q)]

initialize 6
fOI' eaCh GPISOdC <817 a1,71,52,02,72,583, " Unp,Tn, S’n> ~ W@(Sly al)
for t € {1,n}
Ut ~ Qg(st,at)

0 < 0+ OéV@ lOg W@(St, at)vt

return 6

content from David Silver

summary

 SARSA and Q-Learning

* On vs Off policy. Epsilon greedy policy.

* Policy Gradient Methods

What we learned

Solving Reinforcement Learning

— N\

Dynamic Programming Soln. Temporal Difference Learning

/ /\

Bellman Backup Operator SARSA Q-Learning

|

lterative Solution | |
Policy Gradient Methods <

S

Finite difference method Reinforce

What we did not cover

* (Generalized policy iteration

e Simple monte carlo solution

e TD()\) algorithm

* Convergence of Q-learning, SARSA

e Actor-critic method

Application

Playing Atari game with Deep RL

State is given by raw images.

Learn a good policy for a given game.

Playing Atari game with Deep RL

Q(s,a,0) =~ Q" (s,a)
— ZPﬁS,{Rg,S, + vmz}XQ*(s’,a’)}
= RS o +ymaxQ*(s',a’)

FC + relu

conv + relu

conv + relu

‘

——

Q(S,a,é’) ‘
‘

1 1 1

Playing Atari game with Deep RL

Q*(S, CL) — RZ)S/ + 7y mz}x Q*(3/7 a/)

Q(s,a,0) = RS o +ymaxQ(s',a’,0)

min(Q(s,a,0") — R: . —ymaxQ(s', a’, 0"~ 1))?

CL/

FC + relu

conv + relu

‘

‘

Q(s,a,é’) ‘
‘

conv + relu

o
it

nothing deep about their RL ‘ =

Playing Atari game with Deep RL

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {x1 } and preprocessed sequenced ¢ = ¢(s1)
fort=1,T do
With probability € select a random action a;
otherwise select a; = max, Q*(¢(s¢), a;0)
Execute action a; in emulator and observe reward r; and image x;1
Set s;11 = St, Ay, 411 and preprocess ¢p11 = d(Sp11)
Store transition (¢¢, az, ¢, Pp11) in D
Sample random minibatch of transitions (¢;, a;,7;, ¢;41) from D

Set 3 = T , for terminal ¢j+1
g rj +ymaxy Q(¢ji1,a’;0) for non-terminal ¢,
Perform a gradient descent step on (y; — Q(¢;, a;; 6))” according to equation 3
end for

end for

Playing Atari game with Deep RL

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {x1 } and preprocessed sequenced ¢ = ¢(s1)
fort =1,1Tdo
With probability € select a random action a;
otherwise select a; = max, Q*(¢(s¢), a;0)
Execute action a; in emulator and observe reward r; and image 1
Set s;11 = St, Ay, 411 and preprocess ¢p11 = d(Sp11)
Store transition (¢¢, az, ¢, Pp11) in D
Sample random minibatch of transitions (¢;, a;,7;, ¢;41) from D

Sty — 4 T for terminal ¢ ;4
CLy; = r; 4+ 7y max,: Q(¢j+1, a’; 9) for non-terminal ¢j+1

Perform a gradient descent step on (y; — Q(¢;, a;; 6))” according to equation 3
end for

end for

why replay memory?
break correlation between consecutive datapoints

Playing Atari game with Deep RL

Average Reward on Breakout Average Reward on Seaquest Average Q on Breakout Average Q on Seaquest

§250 §1800 = 4 7 = 9

2 ‘[21600 | LA [| CSas5] 1 T 8}

8200 I 1 G100 IWT'”I lH . H~ S 3 S 7

o) M I ©1200 | N a S S 6

2 150 tw\uw Nl AL] 850 ol Wﬂ;w“.‘ | M Thl 2 25y |

° M APA 1 21000 L P = § 95

] AL R B Y B~ I N A8 el BT - o4l

2 100 M‘M AEIE | [T 800 [;\Hl[\' ‘1 ! | w‘ il < 15l 24

o \"‘;“w" | | o 600¢ ,’,\"«"w'w\ [Ind |1 ! ﬂ #'H‘,;L o o 3t

s VNL | © 400 | WL R | | \“rii & 1 & 27

% 50 \ - % {‘lo DRI l \ "“ J o]

§ A//.m,./ §200_J\Mu ‘ ! | 2,0.5»/‘,_/ z 17

< 0 U — ols 0 R 0 R

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Training Epochs Training Epochs Training Epochs Training Epochs

Figure 2: The two plots on the left show average reward per episode on Breakout and Seaquest
respectively during training. The statistics were computed by running an e-greedy policy with € =
0.05 for 10000 steps. The two plots on the right show the average maximum predicted action-value
of a held out set of states on Breakout and Seaquest respectively. One epoch corresponds to 50000
minibatch weight updates or roughly 30 minutes of training time.

Why Deep RL Is haro

Q*(S,CL) — ZP;’S/{RZ,S/ —F’)/IIzalde*(S/,a/)}

 Recursive equation blows as difference between
s,s is small

* oo many iterations required for convergence.
10 million frames tor Atari game.

* |t may take too long to see a high reward action.

L earning to Search

* |t may take too long to see a high reward.
 Ease the learning using a reterence policy
* Exploiting a reference policy to search space better

(s, a) "¢ (s, a)

© o o

summary

SARSA and Q-Learning

On vs Off policy. Epsilon greedy policy.

Policy Gradient Methods

Playing Atari game using deep reinforcement learning

Why deep RL Is hard. Learning to search.

