Reinforcement Learning

Dipendra Misra
Cornell University
dkm@cs.cornell.edu

Task

Grasp the green cup.

Output: Sequence of controller actions

Supervised Learning

Grasp the green cup.

Expert Demonstrations

Supervised Learning

Grasp the green cup.

Problem?

Expert Demonstrations

Supervised Learning

Grasp the cup.

Problem?

Test data

No exploration

Exploring the environment

What is reinforcement learning?

"Reinforcement learning is a computation approach that emphasizes on learning by the individual from direct interaction with its environment, without relying on exemplary supervision or complete models of the environment"

- R. Sutton and A. Barto

Interaction with the environment

Scalar reward

Interaction with the environment

Episodic vs Non-Episodic

Rollout

 $\langle s_1, a_1, r_1, s_2, a_2, r_2, s_3, \cdots a_n, r_n, s_n \rangle$ a_1 a_2 a_n

Setup

Policy

$$\pi(s,a) = 0.9$$

Interaction with the environment

Objective

$$\langle s_1, a_1, r_1, s_2, a_2, r_2, s_3, \cdots a_n, r_n, s_n \rangle$$

maximize expected reward

$$E\left[\sum_{t=1}^{n} r_t\right]$$

Problem?

Discounted Reward

maximize expected reward

$$E\left[\sum_{t=0}^{\infty} r_{t+1}\right]$$

Problem?

unbounded discount future reward

$$E\left[\sum_{t=0}^{\infty} \gamma^t r_{t+1}\right] \qquad \gamma \in [0,1)$$

Discounted Reward

maximize discounted expected reward

$$E\left[\sum_{t=0}^{n-1} \gamma^t r_{t+1}\right]$$

if $r \leq M$ and $\gamma \in [0,1)$

$$E\left[\sum_{t=0}^{\infty} \gamma^t r_{t+1}\right] \leq \sum_{t=0}^{\infty} \gamma^t M = \frac{M}{1-\gamma}$$

Need for discounting

- To keep the problem well formed
- Evidence that humans discount future reward

Markov Decision Process

MDP is a tuple (S, A, P, R, γ) where

- S is a set of finite or infinite states
- A is a set of finite or infinite actions
- For the transition $s \xrightarrow{a} s'$
- $P^a_{s,s'} \in P$ is the transition probability
- $R^a_{s,s'} \in R$ is the reward for the transition \bot
- $\gamma \in [0,1]$ is the discounted factor

Markov Asmp.

MDP Example

Table 3.1: Transition probabilities and expected rewards for the finite MDP of the recycling robot example. There is a row for each possible combination of current state, s, next state, s', and action possible in the current state, $a \in \mathcal{A}(s)$.

$s = s_t$	$s' = s_{t+1}$	$a = a_t$	$\mathcal{P}^a_{ss'}$	$\mathcal{R}^a_{ss'}$
high	high	search	α	$\mathcal{R}^{\mathtt{search}}$
high	low	search	$1 - \alpha$	$\mathcal{R}^{\mathtt{search}}$
low	high	search	$1 - \beta$	-3
low	low	search	β	$\mathcal{R}^{\mathtt{search}}$
high	high	wait	1	$\mathcal{R}^{\mathtt{wait}}$
high	low	wait	0	$\mathcal{R}^{\mathtt{wait}}$
low	high	wait	0	$\mathcal{R}^{\mathtt{wait}}$
low	low	wait	1	$\mathcal{R}^{\mathtt{wait}}$
low	high	recharge	1	0
low	low	recharge	0	0.

Summary

MDP is a tuple (S, A, P, R, γ)

Maximize discounted expected reward

$$E\left[\sum_{t=0}^{n-1} \gamma^t r_{t+1}\right]$$

Agent controls the policy

$$\pi(s,a)$$

What we learned

Reinforcement Learning

Exploration No supervision Agent-Reward-Environment

Policy MDP

Value functions

Expected reward from following a policy

State value function

$$V^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t+1} \mid s_{1} = s, \pi\right]$$

State action value function

$$Q^{\pi}(s, a) = E\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t+1} \mid s_{1} = s, a_{1} = a, \pi\right]$$

State Value function

$$V^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t+1} \mid s_{1} = s, \pi\right]$$

State Value function

$$V^{\pi}(s_1) = E\left[\sum_{t=0}^{\infty} \gamma^t r_{t+1}\right]$$

$$= \sum_t (r_1 + \gamma r_2 \cdots) p(t) \quad \text{where} \quad t = \langle s_1, a_1, s_2, a_2 \cdots \rangle = \langle s_1, a_1, s_2 \rangle : t'$$

State Value function

$$\begin{split} V^{\pi}(s_1) &= E\left[\sum_{t=0}^{\infty} \gamma^t r_{t+1}\right] \\ &= \sum_{t} (r_1 + \gamma r_2 \cdots) p(t) \quad \text{where} \quad t = \langle s_1, a_1, s_2, a_2 \cdots \rangle = \langle s_1, a_1, s_2 \rangle : t' \\ &= \sum_{a_1, s_2} \sum_{t'} P(s_1, a_1, s_2) P(t' \mid s_1, a_1, s_2) \left\{ R^{a_1}_{s_1, s_2} + \gamma(r_2 \cdots) \right\} \\ &= \sum_{a_1, s_2} P(s_1, a_1, s_2) \left\{ R^{a_1}_{s_1, s_2} + \gamma \left[\sum_{t'} P(t' \mid s_1, a_1, s_2) (r_2 \cdots) \right] \right\} \\ &= \sum_{t=1}^{\infty} P(s_1, a_2) \sum_{t=1}^{\infty} P^{a_1}_{s_1, s_2} \left\{ R^{a_1}_{s_1, s_2} + \gamma V^{\pi}(s_2) \right\} \end{split}$$

Bellman Self-Consistency Eqn

$$V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} P^{a}_{s,s'} \left\{ R^{a}_{s,s'} + \gamma V^{\pi}(s') \right\}$$

similarly

$$Q^{\pi}(s, a) = \sum_{s'} P^{a}_{s,s'} \left\{ R^{a}_{s,s'} + \gamma V^{\pi}(s') \right\}$$

$$Q^{\pi}(s,a) = \sum_{s'} P^{a}_{s,s'} \left\{ R^{a}_{s,s'} + \gamma \sum_{a'} \pi(s',a') Q^{\pi}(s',a') \right\}$$

Bellman Self-Consistency Eqn

$$V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} P^{a}_{s,s'} \left\{ R^{a}_{s,s'} + \gamma V^{\pi}(s') \right\}$$

Given N states, we have N equations in N variables

Solve the above equation

Does it have a unique solution?

Yes, it does. Exercise: Prove it.

Optimal Policy

$$V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} P^{a}_{s,s'} \left\{ R^{a}_{s,s'} + \gamma V^{\pi}(s') \right\}$$

Given a state S

policy π_1 is as good as π_2 (den. $\pi_1 \geq \pi_2$) if:

$$V^{\pi_1}(s) \ge V^{\pi_2}(s)$$

How to define a globally optimal policy?

Optimal Policy

policy π_1 is as good as π_2 (den. $\pi_1 \geq \pi_2$) if:

$$V^{\pi_1}(s) \ge V^{\pi_2}(s)$$

How to define a globally optimal policy?

 π^* is an optimal policy if:

$$V^{\pi^*}(s) \ge V^{\pi}(s) \quad \forall s \in \mathcal{S}, \pi$$

Does it always exists?

Yes it always does.

Existence of Optimal Policy

Leader policy for every state S is: $\pi_s = arg \max_{\pi} V^{\pi}(s)$

Define:
$$\pi^*(s,a) = \pi_s(s,a) \ \forall s,a$$

To show π^* is optimal or equivalently:

$$\delta(s) = V^{\pi^*}(s) - V^{\pi_s}(s) \ge 0$$

$$V^{\pi^*}(s) = \sum_{a} \pi_s(s, a) \sum_{s'} P^a_{s,s'} \{ R^a_{s,s'} + \gamma V^{\pi^*}(s') \}$$

$$V^{\pi^s}(s) = \sum_{a} \pi_s(s, a) \sum_{s'} P^a_{s,s'} \{ R^a_{s,s'} + \gamma V^{\pi_s}(s') \}$$

Existence of Optimal Policy

Leader policy for every state S is: $\pi_s = arg \max_{\pi} V^{\pi}(s)$

Define:
$$\pi^*(s,a) = \pi_s(s,a) \ \forall s,a$$

$$V^{\pi^*}(s) = \sum_{a} \pi_s(s, a) \sum_{s'} P^a_{s,s'} \{ R^a_{s,s'} + \gamma V^{\pi^*}(s') \}$$

$$V^{\pi^s}(s) = \sum_{a} \pi_s(s, a) \sum_{s'} P^a_{s,s'} \{ R^a_{s,s'} + \gamma V^{\pi_s}(s') \}$$

$$\delta(s) = V^{\pi^*}(s) - V^{\pi_s}(s) = \gamma \sum_{a} \pi_s(s, a) \sum_{s'} P^a_{s, s'} \{ V^{\pi^*}(s') - V^{\pi_s}(s') \}$$

$$\geq \delta(s')$$

$$\geq \gamma \sum_{a} \pi_s(s,a) \sum_{s'} P^a_{s,s'} \{\delta(s')\} = \gamma \operatorname{conv}(\delta(s'))$$

Existence of Optimal Policy

Leader policy for every state S is: $\pi_s = arg \max_{\pi} V^{\pi}(s)$

Define: $\pi^*(s,a) = \pi_s(s,a) \ \forall s,a$

$$\begin{split} \delta(s) &= V^{\pi^*}(s) - V^{\pi_s}(s) = \gamma \sum_{a} \pi_s(s, a) \sum_{s'} P^a_{s, s'} \{ V^{\pi^*}(s') - V^{\pi_s}(s') \} \\ &\geq \gamma \sum_{s'} \pi_s(s, a) \sum_{s'} P^a_{s, s'} \{ \delta(s') \} = \gamma \text{conv}(\delta(s')) \end{split}$$

$$\delta(s) \ge \gamma \min \delta(s')$$

$$\min \delta(s) \ge \gamma \min \delta(s')$$

$$\gamma \in [0,1) \Rightarrow \min \delta(s) \geq 0$$

Hence proved

Bellman's Optimality Condition

Define
$$V^*(s) = V^{\pi^*}(s)$$
 and $Q^*(s, a) = Q^{\pi^*}(s, a)$

$$V^{\pi^*}(s) = \sum_{a} \pi^*(s, a) Q^{\pi^*}(s, a) \le \max_{a} Q^{\pi^*}(s, a)$$

Claim:
$$V^{\pi^*}(s) = \max_{a} Q^{\pi^*}(s, a)$$

Let
$$V^{\pi^*}(s) < \max_a Q^{\pi^*}(s, a)$$

Define
$$\pi'(s) = \arg\max_{a} Q^{\pi^*}(s, a)$$

Bellman's Optimality Condition

$$\pi'(s) = \arg\max_{a} Q^{\pi^*}(s, a)$$

$$V^{\pi^*}(s) = \sum_{a} \pi^*(s, a) Q^{\pi^*}(s, a)$$

$$V^{\pi'}(s) = Q^{\pi'}(s, \pi'(s))$$

$$\delta(s) = V^{\pi'}(s) - V^{\pi^*}(s) = Q^{\pi'}(s, \pi'(s)) - \sum_{a} \pi^*(s, a) Q^{\pi^*}(s, a)$$

$$\geq Q^{\pi'}(s, \pi'(s)) - Q^{\pi^*}(s, \pi'(s)) = \gamma \sum_{s'} P_{s,s'}^{\pi'(s)} \delta(s')$$

$$\delta(s) \ge 0$$

 π^* is not optimal

 $\exists s' \text{ such that } \delta(s') > 0$

Bellman's Optimality Condition

$$V^*(s) = \max_a Q^*(s, a)$$

$$V^*(s) = \max_{a} \sum_{s'} P_{s,s'}^a \{ R_{s,s'}^a + \gamma V^*(s') \}$$

similarly

$$Q^*(s,a) = \sum_{s'} P_{s,s'}^a \{ R_{s,s'}^a + \gamma \max_{a'} Q^*(s',a') \}$$

Optimal policy from Q value

Given $Q^*(s,a)$ an optimal policy is given by:

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$

Corollary: Every MDP has a deterministic optimal policy

Summary

An optimal policy π^* exists such that:

$$V^{\pi^*}(s) \ge V^{\pi}(s) \quad \forall s \in \mathcal{S}, \pi$$

Bellman's self-consistency equation

$$V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} P^{a}_{s,s'} \left\{ R^{a}_{s,s'} + \gamma V^{\pi}(s') \right\}$$

Bellman's optimality condition

$$V^*(s) = \max_{a} \sum_{s'} P_{s,s'}^a \{ R_{s,s'}^a + \gamma V^*(s') \}$$

What we learned

Solving MDP

To solve an MDP is to find an optimal policy

Bellman's Optimality Condition

$$V^*(s) = \max_{a} \sum_{s'} P_{s,s'}^a \{ R_{s,s'}^a + \gamma V^*(s') \}$$

Iteratively solve the above equation

Bellman Backup Operator

$$V^*(s) = \max_{a} \sum_{s'} P_{s,s'}^a \{ R_{s,s'}^a + \gamma V^*(s') \}$$

$$T:V\to V$$

$$(TV)(s) = \max_{a} \sum_{s'} P_{s,s'}^{a} \{ R_{s,s'}^{a} + \gamma V(s') \}$$

Dynamic Programming Solution

Initialize V^0 randomly

do

$$V^{t+1} = TV^t$$

$$until ||V^{t+1} - V^t||_{\infty} > \epsilon$$

return V^{t+1}

$$V^{t+1}(s) = \max_{a} \sum_{s'} P^{a}_{s,s'} \{ R^{a}_{s,s'} + \gamma V^{t}(s') \}$$

Convergence

$$(TV)(s) = \max_{a} \sum_{s'} P_{s,s'}^{a} \{ R_{s,s'}^{a} + \gamma V(s') \}$$

Theorem: $||TV_1 - TV_2||_{\infty} \le \gamma ||V_1 - V_2||_{\infty}$

where
$$||x||_{\infty} = \max\{|x_1|, |x_2| \cdots |x_k|\}; \ x \in \mathbb{R}^k$$

Proof:

$$|(TV_1)(s) - (TV_2)(s)| = |\max_{a} \sum_{s'} P_{s,s'}^a \{ R_{s,s'}^a + \gamma V_1(s') \} - \max_{a} \sum_{s'} P_{s,s'}^a \{ R_{s,s'}^a + \gamma V_2(s') \} |$$

using
$$|\max_{x} f(x) - \max_{x} g(x)| \le \max_{x} |f(x) - g(x)|$$

Convergence

Theorem:
$$||TV_1 - TV_2||_{\infty} = \gamma ||V_1 - V_2||_{\infty}$$

where $||x||_{\infty} = \max\{|x_1|, |x_2| \cdots |x_k|\}; \ x \in \mathbb{R}^k$

Proof:
$$|(TV_1)(s) - (TV_2)(s)| \le \max_{a} \gamma |\sum_{s'} P_{s,s'}^a(V_1(s') - V_2(s'))|$$

$$\le \max_{a} \gamma \sum_{s'} P_{s,s'}^a |(V_1(s') - V_2(s'))|$$

$$\le \max_{a} \max_{s'} |V_1(s') - V_2(s')|$$

$$\le \gamma ||V_1 - V_2||_{\infty}$$

$$\Rightarrow ||TV_1 - TV_2||_{\infty} \le \gamma ||V_1 - V_2||_{\infty}$$

Optimal is a fixed point

$$V^* = \max_{a} \sum_{s'} P_{s,s'}^a \{ R_{s,s'}^a + \gamma V^*(s') \} = TV^*$$

 V^* is a fixed point of T

Optimal is the fixed point

$$V^* = \max_{a} \sum_{s'} P_{s,s'}^a \{ R_{s,s'}^a + \gamma V^*(s') \} = TV^*$$

 V^* is a fixed point of T

Theorem: V^* is the only fixed point of T

Proof:

$$TV_1 = V_1$$

$$TV_2 = V_2$$

$$||V_1 - V_2||_{\infty} = ||TV_1 - TV_2||_{\infty} \le \gamma ||V_1 - V_2||_{\infty}$$

As $\gamma \in [0,1)$ therefore $||V_1 - V_2||_{\infty} = 0 \Rightarrow V_1 = V_2$

Dynamic Programming Solution

Initialize V^0 randomly

do

$$V^{t+1} = TV^t$$

until
$$||V^{t+1} - V^t||_{\infty} > \epsilon$$

Problem?

return V^{t+1}

Theorem: algorithm converges for all V^0

Proof:
$$\|V^{t+1} - V^*\|_{\infty} = \|TV^t - TV^*\|_{\infty} \le \gamma \|V^t - V^*\|_{\infty}$$

 $\|V^t - V^*\|_{\infty} \le \gamma^t \|V^0 - V^*\|_{\infty}$
 $\lim_{t \to \infty} \|V^t - V^*\|_{\infty} \le \lim_{t \to \infty} \gamma^t \|V^0 - V^*\|_{\infty} = 0$

Summary

Iteratively solving optimality condition

$$V^{t+1}(s) = \max_{a} \sum_{s'} P_{s,s'}^{a} \{ R_{s,s'}^{a} + \gamma V^{t}(s') \}$$

Bellman Backup Operator

$$(TV)(s) = \max_{a} \sum_{s'} P_{s,s'}^{a} \{ R_{s,s'}^{a} + \gamma V(s') \}$$

Convergence of the iterative solution

What we learned

In next tutorial

- Value and Policy Iteration
- Monte Carlo Solution
- SARSA and Q-Learning
- Policy Gradient Methods
- Learning to search OR Atari game paper?