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1. Markov Decision Process (MDP) is a tuple 〈S,A, P,R, γ〉, where S is a set of states, A is a set of
actions, P : S×A×S → [0, 1] is the transition function where P as,s′ for a given s, s′ ∈ S, a ∈ A denotes
the probability of transitioning to state s′ from state s on taking action a. R : S × A × S → R is
the reward function where Ras,s′ for a given s, s′ ∈ S, a ∈ A denotes the expected reward achieved on
transitioning to state s′ from state s on taking action a. γ ∈ [0, 1) denotes the discounting factor (see
below).

2. MDP is finite if S,A are finite else it is infinite. MDP is called discrete if S,A are discrete space else
it is continuous.

3. Given a starting state s0, an agent can take an action a according to some function, to modify the
state to s1 and receive a reward of r1 in the process. It can then take another action and so on, thereby
generating a sequence of state, action, reward τ = 〈s0, a1, r1, s1, a2, r2, s2 · · · ak, rk, sk〉 called a rollout
τ . Here ri = Raisi−1,si and si is sampled with probability P aisi−1,si given ai, si−1. Length of this rollout
is k (equal to number of actions).

4. MDP encodes Markov assumption in the form that reward and transition probability are independent
of history of actions and states, given the last state. If this assumption is removed, the generalization
is called Contextual Decision Process (CDP).

5. MDP defines a task where an agent has to maximize expected discounted reward. Formally, given a
distribution over initial state s0 ∼ ρ(s), the objective of the agent is to maximize J where:

J = Es0∼ρ(s)[
∑
t≥0

γtrt+1 | s0] (1)

rt is the reward at time step t and is discounted by a factor of γt.

6. A task is episodic if every rollout terminates after a finite number of steps otherwise the task is called
non-ending task. For an episodic task, the supremum of the number of steps is called the time horizon.
For a non-ending task, 1

1−γ is called the effective time horizon.

7. Agent can only maximize the objective based on its choice of action. One way to encode this is in
the form a policy π : S ×A→ [0, 1] which denotes a probability distribution over action given a state
s. For a given policy π, the above objective can be computed and is denoted as Jπ. When policy is
deterministic then we use the notation π(s) to denote the action in state s.

8. Solving an MDP or reinforcement learning problem means finding a policy that optimizes J . Formally,
we want to find the policy (aka control) arg maxπ J

π.

9. An episodic MDP task with time horizon 1 is called a Contextual Bandit setting.

10. State value function of a policy (denoted V π) is the function S → R that gives the expected total
discounted reward received on following policy π given a starting state s ∈ S.

V π(s) = E[
∑
t≥0

γtrt+1 | s0, π] (2)

11. Similarly state-action value function of a policy is the function S × A → R that gives the expected
total discounted reward received on following policy π given a starting state s and an action a that is
performed in the state.
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Qπ(s, a) = E[
∑
t≥0

γtrt+1 | s0, a, π] (3)

12. Jπ =
∑
s ρ(s)V π(s)

13. V π(s) =
∑
a π(s, a)Qπ(s, a) implying together with 12 that Jπ =

∑
s ρ(s)

∑
a π(s, a)Qπ(s, a)

14. V π(s) =
∑
a π(s, a)

∑
s′ P

a
s,s′{Ras,s′ + γV π(s′)}

Qπ(s, a) =
∑
s′ P

a
s,s′{Ras,s′ + γV π(s′)}

Qπ(s, a) =
∑
s′ P

a
s,s′{Ras,s′ + γ

∑
a′ π(s, a′)Qπ(s′, a′)} (from previous equation and 12)

[Bellman self consistency equations]

15. A policy π1 is as good as policy π2 (denoted π1 ≥ π2) iff V π1(s) ≥ V π2(s) ∀s ∈ S. If the inequality is
strict even for a single state then π1 is strictly better than π2.

16. For every MDP, there exists at least one policy π∗ such that π∗ ≥ π ∀π. It can be further shown that
atleast one deterministic optimal policy also exists. Denote V ∗ = V π

∗
and Q∗ = Qπ

∗
. Note that all

optimal policies have the same state and action-value value functions.

17. arg maxQ∗(s, a) is an optimal deterministic policy.

18. If π2(s) = arg maxaQ
π1(s, a) then it can be shown that π2 ≥ π1. [Policy Improvement]

19. V ∗(s) = maxaQ
∗(s, a)

V ∗(s) = maxa
∑
s′ P

a
s,s′{Ras,s′ + γV ∗(s′)}

Q∗(s, a) =
∑
s′ P

a
s,s′{Ras,s′ + γmaxa′ Q

∗(s′, a′)}

[Bellman optimality equations]

One way to get intuition of the first optimality equation is that if we keep on doing policy improvement,
then at some point we can no longer improve the policy that is π2(s) = arg maxaQ

π1(s, a) is same as
π1 and we get π1(s) = arg maxaQ

π1(s, a). This denotes the optimality condition.

20. Given a policy π and starting state s0, the policy gradient objective is:

J = V π(s0) (4)

then
∇J =

∑
s

dπ(s; s0)
∑
a

∇π(s, a)Qπ(s, a) (5)

where dπ(s) =
∑
t≥0 γ

tP (st = s;π, s0) is the discounted state visitation distribution with P (st =
s;π, s0) denoting the probability of reaching state s after t steps. [Policy Gradient Theorem]
Further it can be shown that

J = V π(s0) =
∑
s

dπ(s; s0)
∑
a

π(s, a)Ras,s′ (6)
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