Kinematic State Abstraction and Provably Efficient Rich-Observation
Reinforcement Learning

Dipendra Misra' Mikael Henaff ! Akshay Krishnamurthy ! John Langford '

Abstract

We present an algorithm, HOMER, for exploration
and reinforcement learning in rich observation en-
vironments that are summarizable by an unknown
latent state space. The algorithm interleaves rep-
resentation learning to identify a new notion of
kinematic state abstraction with strategic explo-
ration to reach new states using the learned ab-
straction. The algorithm provably explores the en-
vironment with sample complexity polynomial in
the number of latent states and time horizon. Cru-
cially, the observation space could be infinitely
large. This guarantee enables efficient global pol-
icy optimization for any reward function. On the
computational side, we show that HOMER can be
implemented efficiently whenever certain super-
vised learning problems are tractable. Empirically,
we evaluate HOMER on a challenging exploration
problem, where we show that the algorithm is ex-
ponentially more sample efficient than standard
reinforcement learning baselines.

1. Introduction

Modern reinforcement learning applications call for agents
that operate directly from rich sensory information such
as megapixel camera images. This rich information en-
ables representation of detailed, high-quality policies and
obviates the need for hand-engineered features. However,
exploration in such settings is notoriously difficult and, in
fact, statistically intractable in general (Jaksch et al., 2010;
Lattimore & Hutter, 2012; Krishnamurthy et al., 2016). De-
spite this, many environments are highly structured and do
admit sample efficient algorithms (Jiang et al., 2017); in-
deed, we may be able to summarize the environment with
a simple state space and extract these states from raw ob-
servations. With such structure, we can leverage techniques

*Equal contribution 'Microsoft Research, New York, NY. Cor-
respondence to: Dipendra Misra <dimisra@microsoft.com>.

Proceedings of the 37" International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

from the well-studied tabular setting to explore the environ-
ment (Hazan et al., 2018), efficiently recover the underly-
ing dynamics (Strehl & Littman, 2008), and optimize any
reward function (Kearns & Singh, 2002; Brafman & Ten-
nenholtz, 2002; Strehl et al., 2006; Dann et al., 2017; Azar
et al., 2017; Jin et al., 2018). But can we learn to decode a
simpler state from raw observations alone?

The main difficulty is that learning a state decoder, or a
compact representation, is intrinsically coupled with explo-
ration. On one hand, we cannot learn a high-quality decoder
without gathering comprehensive information from the en-
vironment, which may require a sophisticated exploration
strategy. On the other hand, we cannot tractably explore the
environment without an accurate decoder. These interlock-
ing problems constitute a central challenge in reinforcement
learning, and a provably effective solution remains elusive
despite decades of research (Mccallum, 1996; Ravindran,
2004; Jong & Stone, 2005; Li et al., 2006; Bellemare et al.,
2016; Nachum et al., 2019).

In this paper, we provide a solution for a significant sub-
class of problems known as Block Markov Decision Pro-
cesses (MDPs) (Du et al., 2019), in which the agent operates
directly on rich observations that are generated from a small
number of unobserved latent states. Our algorithm, HOMER,
learns a new reward-free state abstraction called kinematic
inseparability, which it uses to drive exploration of the en-
vironment. Informally, kinematic inseparability aggregates
observations that have the same forward and backward dy-
namics. When observations have shared backward dynam-
ics, a single policy simultaneously maximizes the probabil-
ity of reaching them, which is useful for exploration. Shared
forward dynamics is naturally useful for recovering the la-
tent state space and model. Most importantly, we show that
kinematic inseparability can be recovered from a bottleneck
in a regressor trained on a contrastive estimation problem
derived from raw observations.

HOMER performs strategic exploration by training policies to
visit each kinematically inseparable abstract state, resulting
in a policy cover. These policies are constructed via a re-
duction to contextual bandits (Bagnell et al., 2004), using a
synthetic reward function that incentivizes reaching an ab-
stract state. Crucially, HOMER interleaves learning the state

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

Performing Exploration

Observations

Explored MDP Unexplored MDP H Learned State

=P Learning State Abstraction =9

Performing Exploration

Explored MDP Unexplored MDP

—» Learning State Abstraction

Figure 1: HOMER learns a set of exploration policies and a state abstraction function by iterating between exploring using the
current state abstraction and refining the state abstraction based on the new experience.

abstraction and policy cover in an inductive manner: we use
the policies from a coarse abstraction to reach new states,
which enables us to refine the state abstraction and learn
new policies (See Figure 1 for a schematic). Each process is
essential to the other. Once the policy cover is constructed,
we can use it to efficiently gather the information necessary
to find a near-optimal policy for any reward function.

We analyze the statistical and computational properties of
HOMER in episodic Block MDPs. We prove that HOMER learns
to visit every latent state and also learns a near-optimal
policy for any given reward function with a number of tra-
jectories that is polynomial in the number of latent states,
actions, horizon, and the complexity of two function classes
used by the algorithm. There is no explicit dependence
on the observation space size. The main assumptions are
that the latent states are reachable and that the function
classes are sufficiently expressive. There are no identifia-
bility or determinism assumptions beyond decodability of
the Block MDP, resulting in significantly greater scope than
prior work (Du et al., 2019; Dann et al., 2018). On the com-
putational side, HOMER operates in a reductions model and
can be implemented efficiently whenever certain supervised
learning problems are tractable.

Empirically, we evaluate HOMER on a challenging reinforce-
ment learning problem with high-dimensional observations,
precarious dynamics, and sparse, misleading rewards. The
problem is googol-sparse: the probability of encountering
an optimal reward through random search is 10~°°, HOMER
recovers the underlying state abstraction for this problem
and consistently finds a near-optimal policy, outperforming
popular baselines that use naive exploration strategies (Mnih
et al., 2016; Schulman et al., 2017) or more sophisticated ex-
ploration bonuses (Burda et al., 2019), as well as the recent
PAC-RL algorithm of Du et al. (2019).

2. Preliminaries

We consider reinforcement learning (RL) in episodic Block
Markov Decision Processes (Block MDP), first introduced
by Du et al. (2019). A Block MDP M is described
by a large (possibly infinite) observation space X, a fi-
nite latent unobserved state space S, a finite set of ac-

tions A, and a time horizon H € N. The process
starts from distribution u € A(S)!, transitions via T :
S x A — A(S), emits observations via ¢ : § —
A(X), and rewards via R : X x A x X — A([0,1]).
An agent-environment interaction repeatedly generates H -
step trajectories (s1, 21, 01,71, ..,SH,TH, o, ") where
s1 ~ fy Spy1 ~ T(:|sn,an), xn ~ q(sp) and 7, ~
R(zp,ap,xp41) for all h € [H], and the agent chooses
actions. We set R(xy,apm,xg4+1) = R(zm,ap) for all
Tp,aq as there is no x4 ;. In addition, for all trajectories
Zle rp, < 1. The agent does not see the states s1, ..., sg.

Without loss of generality, we partition S into subsets
S1,...,8H, where S, are the only states reachable at
time step h. We similarly partition X based on time step
into X1, ..., Xg. Formally, T(- | s,a) € A(Sp4+1) and
q(s) € A(Xy) when s € Sp. This partitioning may be
internal to the agent as we can simply concatenate the time
step to the states and observations. Let 7 : X — [H] be the
time step function, associating an observation to the time
point where it is reachable.

A policy m : X — A(A) chooses actions on the basis of
observations and defines a distribution over trajectories. We
use E,[-], P[] to denote expectation and probability with
respect to this distribution. We define the value function as:

H
Vh e [H],s € Sy: V(s;m) :=E, lz The | S 5] ,
h=h

and policy value as V(7)) := E,,~, [V (s1;7)]. The goal
of the agent is to find a policy that maximizes policy value.
As the observation space is extremely large, we consider a
function approximation setting, where the agent has access
to a policy class I : X — A(A). We define the class
of non-stationary policies IIxs := II”. A policy 7.5 =
(71, ...,mr) € Ilxs takes action aj, according to 7y,.> The
optimal policy in this class is 7* := argmax, .y V(7),
and our goal is to find a policy with value close to the
optimal value, V (7*).

'Du et al. (2019) assume the starting state is deterministic,
which we generalize here.

>We also use h-step non-stationary policies (71, . ..
1" when we only execute this policy for steps.

yTh) €

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

Environment assumptions. The key difference between
Block MDPs and general Partially-Observed MDPs is a dis-
jointness assumption, which removes partial observability
effects and enables tractable learning.

Assumption 1. The emission distributions for any two
states s,s' € S are disjoint, that is supp(q(s)) N
supp(q(s’)) = 0 whenever s # s'.

This disjointness assumption was argued by Du et al. (2019)
to be a natural fit for visual grid-world scenarios which are
common in empirical RL research. Assumption 1 allows
us to define an inverse mapping g* : X — S such that for
each s € S and x € supp(q(s)), we have g*(z) = s. The
agent does not have access to g*.

Apart from disjointness, the main environment assumption
is that states are reachable with reasonable probability. To
formalize this, we define a maximum visitation probability
and reachability parameter:

n(s) := max P, [s],

wellns Thmin = Isléléln(s)

Here P, [s] is the probability of visiting s along the trajectory
taken by 7. As in Du et al. (2019), our sample complexity
scales polynomially with 77;;”, so this quantity should be
reasonably large. In contrast with prior work (Du et al.,
2019; Dann et al., 2018), we do not require any further iden-
tifiability or determinism assumptions on the environment.

We call the policies that visit a particular state with maxi-
mum probability homing policies.

Definition 1 (Homing Policy). The homing policy for an
observation v € X is w, := argmax, ¢, Pr [2]. The hom-
ing policy for a state s € S is w1, := argmax, .y, Pr [s].

Homing policies are non-compositional, in that we cannot
extend homing policies for states in Sy, to find homing
policies for states in Sj,. See Appendix A for proof and
further discussion. Non-compositionality implies that we
must take a global policy optimization approach for learning
homing policies, which we will do in the sequel.

Reward-free learning. In addition to finding a near-
optimal policy, we consider a reward-free objective. In
this setting, the goal is to find a small set of policies, called
a policy cover, that we can use to visit the entire state space.

Definition 2 (Policy Cover). A finite set of non-stationary
policies V is called an a-policy cover if for every state
s € S we have max, cy Py [s] > an(s).

Intuitively, we hope to find a policy cover of size O(|S|).
By executing each policy in turn, we can collect a dataset of
observations and rewards from all states at which point it is
straightforward to maximize any reward (Kakade & Lang-
ford, 2002; Munos, 2003; Bagnell et al., 2004; Antos et al.,

2008; Chen & Jiang, 2019; Agarwal et al., 2019). Thus, con-
structing a policy cover can be viewed as an intermediate
objective that facilitates reward sensitive learning.

Function classes. As the observation space is very large,
we use function approximation to generalize across observa-
tions. HOMER uses two function classes. The first is the pol-
icy class IT : X — A(.A), which was used above to define
the optimal value and the maximum visitation probabilities.
We also use a family F of regression functions with a
specific form. To define Fy, first define @ : X — [N]
which maps observations into N discrete abstract states.
Second, define Wy : [N] x A x [N] — [0, 1] as another
“tabular” regressor class which consists of all functions of
the specified type. Then, we set Fn = {(z,a,2’') —
w(®(z),a,¢®) (') : w € Wy, ¢, ¢®B) € &y} and
F = UnenFn. For a simpler analysis, we assume II
and @y are finite and we measure statistical complexity
via In |TI| and In |® |, with no assumptions on the tabular
class Wy . Our results only involve standard uniform con-
vergence arguments so extensions to infinite classes with
other statistical complexity notions is straightforward. We
emphasize that II is typically not fully expressive.

Computational oracles. We take a “learning reductions”
approach by assuming access to two well-studied learning
oracles. This oracle model of computation provides no sta-
tistical benefit as the oracles can always be implemented via
enumeration; the model simply serves to guide the design
of practical algorithms. For the policy class II, we assume
access to an offline contextual bandit optimization routine:

rifa = a}} |

CB(D,II) := argmax Z
p

well

Earnn(o) [
(x,a,p,r)ED

The dataset consists of (x,a,p,r) quads, where x € X,
a€ A pel0,1] and r € Ris the reward for the action a,
which was chosen with probability p. This oracle solves a
contextual bandit problem and is implementable by reduc-
tion to cost-sensitive classification (Agarwal et al., 2014).

For the regression class F, we assume that we can solve

square loss minimization problems:

REG(D, Fy) := argmin Z
TEFN (20,0 y)eD

(f(xv a, :E/) - y)Z'

Here, the dataset consists of (z,a,2’,y) quads where
z,2' € X,a € Aandy € {0,1} is a binary label. Our func-
tion class F is non-standard due to quantization hence REG
is always solving a non-convex problem. We later discuss
using a standard non-quantized model class.

We assume the CB and REG oracles with n examples has a
time complexity of Timepo(72) and Timeeg (1) respectively.

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

3. Kinematic Inseparability State Abstraction

The foundational concept for our approach is a new form
of state abstraction, called kinematic inseparability. This
abstraction has three key properties demonstrated in Sec-
tion 4. First, it can be learned via a reduction to supervised
learning. Second, it enables reward-free exploration of the
environment. Last, it enables us to learn and visualize the
dynamics. We define kinematic inseparability below.

Definition 3 (Kinematic Inseparability). Two observations
a}, xhy, are kinematically inseparable (K1) if for every distri-
bution u € A(X x A) with support over X x A and for
every x,x" € X and a,a’ € A the following holds:

T(a" | 2y,d') =T(a" | 25,a'), and ~ (CI)
Pu(e,a|wy) = Pu(w,a | ay), (C2)
where Py (z,a | 2') := ZT(IT/l(i/{\l%ua()lu?% 7y, is the back-

ward dynamics measuring the probability that the previous
observation and action was (x,a) given that the current
observation is x' and the prior over (x, a) is u.

Condition C1 and Condition C2 place constraints on for-
ward dynamics (7") and backward dynamics (P,). We say
) and %, are forward KI if Condition C1 holds and back-
ward KI if Condition C2 holds. All three notions of KI
are equivalence relations, and hence they partition the ob-
servation space. The backward kinematic inseparability
dimension, denoted Npp, is the coarsest partition size gen-
erated by the backward KI equivalence relation, with Ngp
and Nkp defined similarly for the forward KI and KI rela-
tions. Partition elements represent abstract states denoted
via ¢, ¢F, ¢* : X — N. For example ¢%(z1) = ¢5(x2)
if and only if 27 and x5 are backward KI.

For exploration, it suffices to learn backward KI. This is
evident from the following lemma.
Lemma 1. If x1, x5 are backward kinematic inseparable

]P’.,,l(:vl) _ P‘l\'l ($2)
Pry (1) = Pry(x2)°

then for all w1, w9 € llyg we have

The proof of this lemma and all mathematical statements in
this paper are deferred to the appendices. At a high level,
the lemma shows that backward KI observations induce
the same ordering over policies with respect to visitation
probability. This property is useful for exploration, since a
policy that maximizes the probability of visiting a backward
KI abstract state, also maximizes the probability of visiting
each individual observation in that abstract state simultane-
ously. While backward KI is sufficient for exploration, it
ignores the forward dynamics, which are useful for learning
a model or visualizing the underlying dynamics.

In Appendix B, we collect and prove several useful proper-
ties of these state abstractions. We show that observations
emitted from the same state are kinematically inseparable

and, hence, max{Npp, Ngp} < Ngp < |S|. It is possible
for Nkp < |S| only when the latent state space is obser-
vationally unidentifiable. For example, if we partition the
observations from a state into many “sub-states,” we obtain
a new Block MDP that is indistinguishable from the original.
Observations from these sub-states can be shown to be kine-
matically inseparable. Using this, kinematic inseparability
implies a canonical state space for Block MDPs.

Definition 4 (Canonical Form). A Block MDP is in canoni-
cal form if V1,20 € X: g*(x1) = g*(x2) if and only if x1
and x4 are kinematically inseparable.

The canonical form is simply a way to characterize the state
space of a Block MDP—it does not restrict this class of
environments whatsoever.

4. HOMER: Learning Kinematic
Inseparability for Strategic Exploration

The main algorithm, HOMER (Algorithm 1), learns a kine-
matic inseparability abstraction while performing reward-
free strategic exploration. Given hypothesis classes II
and F, a positive integer N, and three hyperparameters
n,€,0 € (0,1), HOMER learns a policy cover of size N and
a state abstraction function for each time step. We assume
N > Ngp and 7 < 14y, for our theoretical analysis.

HOMER operates in two phases: a reward-free phase in which
itlearns a policy cover (line 2-line 15) and a reward-sensitive
phase where it learns a near-optimal policy for the given
reward function (line 17). In the reward-free phase, HOMER
proceeds inductively, learning a policy cover for time step h
given the learned policy covers ¥;.;,_; for previous steps
(line 2-line 15). In each iteration h, we first learn an abstrac-
tion function &213) over X},. This is done using a form of con-
trastive estimation and our function class Fy . Specifically
in the h™ iteration, HOMER collects a dataset D of size Treg
containing real and imposter transitions. We define a sam-
pling procedure: (x, a,z’) ~ Unf(¥j_1)oUnf(A) where =
is observed after rolling-in with a uniformly sampled policy
in Wy, _; until time step h — 1, action a is taken uniformly at
random, and 2’ is sampled from T'(- | z, a) (line 5). We sam-
ple two independent transitions (x1, a1, z}), (2, az, rh) us-
ing this procedure as well as a Bernoulli random variable
y ~ Ber(1/2). If y = 1 then we add the observed transition
([x1,a1,2}],y) to D and otherwise we add the imposter
transition ([z1, a1, z5],y) (line 6-line 10). The imposter
transition may not be a feasible environment outcome.

We call the subroutine REG to solve the supervised learning
problem induced by D with model family F (line 11), and

we obtain a predictor fn = (o, g?)ﬁf_)l, Ang)). As we show

later, (%LB) is closely related to backward KI abstraction for
X, and ¢3ng1 is related to forward KI for X} _.

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

Algorithm 1 HOMER(II, 7, N, 7, ¢, §). Reinforcement and
abstraction learning in a Block MDP.

5 O (Vi ()
Npsap = O (w In (%)) and Uy, =0

2. forh=2,...,H do

33 D=1

4: for nyg times do

5: (z1,a1,x}), (x2,as,xh) ~ Unf(¥)_1)oUnt(A)
6: y ~ Ber(1/2)

7 if y = 1 then

8: D « DU{([x1,a1,2}],1)}, // Real transition
9: else
10: D e D U {([z1,a1,25],0)}. // Fake transition
11: (p, gbh 1> 51B)) < REG(Fn, D) // Do Abstraction
12: fori=1to N do

13 Rip(z,a,2) :=1{r(z') = h AP (2') = i}
14: Tih < PSDP(W1.p,—1, Ripy h — 1,11, npap)

15: Uy, <— Uy U {m; n} // Save exploration policy
~ 2 2

16: Set neya = O (% In (%”))

17: T+ PSDP(\I’LH7 R, H,II, neval)

18: return 7, V.5, ﬁ,{_l 5. 11

Algorithm 2 PSDP(VU ., R’ h,II, n). Optimizing reward
function R’ given policy covers ¥y.p,

1: fort =h,h—1 ,1do
2: D=10
3: for n times do
4 (z,a,p,r) ~ Unf(¥;)oUnf(A)ofyp10-- 0
5: D+ {(z,a,p,")}UD
6: 7 < CB(D,II) // solve contextual bandit problem
7: return (71, 7o, -+, 7p)
We define N internal reward functions {R; 5} | corre-

sponding to each output of qShB) (line 13). As argued in Sec-
tion 3, backward KI is sufficient for exploration, therefore,
we only use Q%LB) for defining R; ;. The reward function
R; p, gives a reward of 1 if the agent observes 2’ at time

step h satisfying <;AS£LB) (z") = i and 0 otherwise. The internal
reward functions incentivize the agent to reach different
learned backward KI abstract states.

We find a policy that optimizes the internal reward functions
using PSDP (Algorithm 2), which is based on Policy Search
by Dynamic Programming (Bagnell et al., 2004). Using an
exploratory data-collection policy, we optimize a reward
function by solving a sequence of contextual bandit prob-
lems (Langford & Zhang, 2008) in a dynamic programming

fashion. In our case, the policy covers for steps 1,...,h —1

induce the exploratory policy (Algorithm 2, line 4).
Formally, at time step ¢ of PSDP, we solve

h

’
1;16312[(ExtNDmat,NmatJrl;hNﬁ'tJrl:h E : R (‘rh/" Qnss -Th’+1))
h'=t

using the previously computed solutions (7441, - - - , 7) for
future time steps. The context distribution D, is obtained
by uniformly sampling a policy in ¥, and rolling-in with
it until time step ¢. To solve this problem, we first collect
a dataset D of tuples (z, a, p,r) of size n by (1) sampling
x by rolling-in with a uniformly selected policy in ¥, until
time step ¢, (2) taking action a uniformly at random, (3)
setting p := 1/|.A|, and (4) executing 741 1.5, and (5) setting

= ZZ’:t rn. Then we invoke the contextual bandit
oracle CB with dataset D to obtain 7;. Repeating this process
we obtain the non-stationary policy 7.5, returned by PSDP.

The learned policy cover Wy, for time step h is simply the
policies identified by optimizing each of the IV internal
reward functions {R; », } ;. Once we find the policy covers
Uy.p, we perform reward-sensitive learning via a single
invocation of PSDP using the external reward function R
(Algorithm 1, line 17). In a purely reward free setting, we
can just return the policy covers and learned abstractions.

We combine the two abstractions as ¢, := (th , 23)) to
form the learned KI abstraction, where for any z1, x5 € X,
¢, (x1) = ¢, (x2) if and only if ¢(F)(1) = HF)(xg) and
(B)(xl) (B)(2). We define QS(B)()=1 and q&g) =1
as there is no backward and forward dynamics at these
steps, respectively. Empirically, we use ¢ for learning the
transition dynamics and visualization (see Section 7).

S. Theoretical Analysis

Our main theoretical contribution is to show that HOMER
computes a policy cover and a near-optimal policy with
high probability in a sample-efficient and computationally-
tractable manner. The result requires an additional expres-
sivity assumption on classes II and F, which we now state.
Assumption 2. Let R := {R} U {(z,a,2') +~
1{p(z)=iNnT(x')=h} | ¢ € Pn,i € [N],h €
[H], N € N} be the set of external and internal reward
Sfunctions. We assume that 11 satisfies policy completeness
for every R’ € R: for every h € [H) and ©' € Tlys, there
exists m € 11 such that for each x € X}, we have:

H

m(x) = argmax E E T | Th =T a8 = a,ap ~ 7
acA h—h

]

We also assume that F is realizable: for any h € [H
N > Ngp, and any prior distribution p € A(Sy) with

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

supp(p) = S, there exists f, € Fn, such that for any
T € Xy_1,a € A, and ' € X, we have:

T(g*(2')|g*(2),a)
T(g*(2")|g*(z),a) + p(g*

fﬂ(zvav‘rl) = (SC/))

Completeness assumptions are common in the analysis of
dynamic programming style algorithms for the function
approximation setting (Antos et al., 2008) (see Chen & Jiang
(2019) for a detailed discussion). Our exact completeness
assumption appears in the work of Dann et al. (2018), who
use it to derive an efficient algorithm for a restricted version
of our setting with deterministic latent state transitions.

The realizability assumption on F is adapted to our learn-
ing approach: as we use F to distinguish between real and
imposter transitions, F should contain the optimal regres-
sor for these problems. In HOMER, the sampling procedure
we use to collect data for the learning problem in the h*"
iteration induces a marginal distribution p € A(S},) and
the optimal regressor for this problem is f, (See Lemma 9
in Appendix D). It is not hard to see that if =, x2 are kine-
matically inseparable then f,(x1,a,2') = f,(x2,a,2’) and
the same claim holds for the third argument of f,,. Therefore
the realizability structure of F ensures that ® 5 contains a
kinematic inseparability abstraction.

Theoretical Guarantees. We now state the main guarantee.
Theorem 1 (Main Result). For any Block MDP and hyper-
parameters €,0,n € (0,1), N € N, satisfying n < Nmin
and N > Ngp, HOMER outputs exploration policies V1.
and a reward sensitive policy T satisfying:

1. Wy, is an 1/2-policy cover of Sy, for every h € [H]
2. V(&) > maxpem V(m) — €
with probability least 1 — §. The sample complex-

ity of HOMER is O (npsde H3 + Nreg H + Neyal H) where
Npsdps Tregs Neval are as specified in Algorithm I, which gives

In(|®x|/6)+
N2H3|A|
62

~ (NS|A*H NS|A|H
O 3 + 3
7
<N5H4A|
s +
"

).

The running time is O (npsdeH3 + nregH2 + Neva H?+

Timepol (Ppsap) N H? + Timeyeg (1ireg) H + Timepo) (Neval) H) -

Theorem 1 shows that executing HOMER with Ngxp <
N < cNgp and 2= < 5 < %)y for some con-
stants ¢,d > 1, gives us a sample complexity of
poly(Nkp, H, |Al,n,.} e, log|II|/§), which at a coarse
level is our desired scaling. Empirically, we can set the hy-
perparameters by running HOMER with N = 2¢ and n = 2%
for increasing values of ¢, and stopping when the final
learned policy stops improving. Recall that Nxp < |S|,

hence our bounds are polynomially dependent on the state
space but crucially do not depend upon the size of observa-
tion space. Further, our bounds only depend on log |® |
which means we can use an exponentially large model fam-
ily for ® . In terms of computation, the running time is
polynomial in our oracle model, where we assume we can
solve contextual bandit problems over II and regression
problems over F . In Section 7, we see that these problems
can be solved effectively in practice.

The closest related result is for the PCID algorithm of Du
et al. (2019). PCID provide guarantees only for a restricted
class of Block MDPs. The precise details of the guaran-
tee differs from ours in several ways (e.g., additive versus
multiplicative error in policy cover definition, different com-
putational and expressivity assumptions), so the sample
complexity bounds are incomparable. However, Theorem 1
represents a significant conceptual advance as it eliminates
the identifiability assumptions required by PCID and there-
fore greatly increases the scope for tractable RL.

Why does HOMER learn kinematic inseparability? A de-
tailed proof of Theorem 1 is deferred to Appendix C-
Appendix D, but for intuition, we provide a sketch of how
HOMER learns a kinematic inseparability abstraction. For
this discussion only, we focus on asymptotic behavior and
ignore sampling issues.

Inductively, assume that Uj,_; is a policy cover of Sp_1,
let D(x,a,x’) be the marginal distribution over real and
imposter transitions sampled by HOMER in the h'" iteration
(line 4-line 10), and let p be the marginal distribution over
X First observe that as U,_; is a policy cover, we have
supp(D) Xn—1 X Ax Xy, which is crucial for our analysis.
Let f = (wp,, Elp)l, hB)) be the output of the regression
oracle REG in this iteration. The first observation is that
the Bayes optimal regressor for this problem is f, defined
in Assumption 2, and, with realizability, in this asymptotic
discussion we have f = fo.

Next, we show that for any two observations z, x € X},

if qﬁ(B)(1) = (B) (x4) then z and x, are backward kine-
matically 1nseparable If this precondition holds, then
Vo € Xj_1,a € A we have:

nmﬂwnszaxnzzb@ﬁxma/fkdnz

NG B ;
(94”1 (@), 0,047 (a5)) = [, a,2%) = [y, a,25).
Then, by inspection of the form of f,, we have

T(xy |2,a) _ T(ay | a)

fp(l‘,a,$/1) = fp(xvCL?x/Z) A

p(h) p(s)

As this identity holds for all x € A, _1,a € A and trivially
when = & Xj,_1, it is easy to see that =, 2/, are backward

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

KI. Formally, for any prior u € A(X,.A), we have

=Py(z,a|)).

This implies that gzggs) is a backward KI abstraction over X},.

Similarly, we can show that gZ;gLF_) , is a forward KI abstraction
over X} _1 (See Appendix D.4 for proof).

Standardizing REG Oracle. We learn abstractions by solv-
ing regression problems with the quantized model class F .
While this is empirically feasible as we will see, it always
result in a difficult optimization problem and requires a par-
ticular form for the model class. We show how to avoid this
in Appendix E, where we present a parallel version of our
algorithm and guarantees using a black-box (non-quantized)
regression class. The main algorithmic difference is that
we recover the abstraction by clustering the outputs of the
predictor trained to distinguish real and imposter transitions.

Limitation of Existing Abstractions. In Appendix G we
present examples showing that strategies for learning ab-
straction from prior work can lead to exploration failures.
We specifically demonstrate failures for (a) predicting the
previous action (Pathak et al., 2017), (b) predicting the pre-
vious abstract state and action (Du et al., 2019), and (c¢)
using autoencoders (Tang et al., 2017). Figure 2a provides
a sketch of the autoencoding failure. If observations contain
a bit encoding the state along with many more noisy bits, the
optimal autoencoder will memorize a noise bit and ignore
the state. This naturally leads to exploration failure.

6. Related Work

Sample efficient exploration of Markov Decision Processes
with a small number of observed states has been studied in
a number of papers (Brafman & Tennenholtz, 2002; Strehl
et al., 2006; Jaksch et al., 2010), initiated by the break-
through result of Kearns & Singh (2002). While state-of-
the-art results provide near-optimal guarantees for these
small-state MDPs, the algorithms do not exploit latent struc-
tures, and therefore, cannot scale to the rich-observation
environments that are popular in modern empirical RL.

A recent line of theoretical work (Krishnamurthy et al.,
2016; Jiang et al., 2017) focusing on rich observation
reinforcement learning has shown that it is information-
theoretically possible to explore these environments and
has provided computationally efficient algorithms for some
special settings. In particular, Dann et al. (2018) considers
deterministic latent-state dynamics while Du et al. (2019)
allows for limited stochasticity. As we have mentioned,

the present work continues in this line by eliminating as-
sumptions required by these results, further expanding the
scope for tractable rich observation reinforcement learning.
Specifically, compared to the PCID algorithm of Du et al.
(2019), HOMER can handle a stochastic start state and does
not require any margin assumptions on the Block MDP. In
addition, our algorithm does not rely on abstract states for
defining policies or future prediction problems which avoids
cascading errors due to inaccurate predictions.

On the empirical side, a number of approaches have been
proposed for exploration with large observation spaces using
pseudo-counts (Tang et al., 2017), optimism-driven explo-
ration (Chen et al., 2017), intrinsic motivation (Bellemare
et al., 2016), and prediction errors (Pathak et al., 2017).
While these algorithms can perform well on certain RL
benchmarks, we lack a deep understanding of their behavior
and failure modes. As the earlier discussion and examples
in Appendix G show, using the representations learned by
these methods for provably efficient exploration is challeng-
ing, and may not be possible in some cases.

Most closely related to our work, Nachum et al. (2019) use
a supervised learning objective similar to ours for learning
state abstractions. However, they do not address the problem
of exploration and do not provide any sample complexity
guarantees. Importantly, we arrive at our supervised learn-
ing objective with the goal to learn kinematic inseparability.

7. Proof of Concept Experiments

We evaluate on a challenging problem called a diabolical
combination lock that contains high-dimensional observa-
tions, precarious dynamics, and anti-shaped, sparse rewards.

The environment. The diabolical combination lock is a
class of rich observation MDPs. For a fixed horizon H
and action space size K, the state space is given by S :=
{81,as 51,6} U {Sh,a; Sh,bs Sh,c }1_, and the action space by
A :={a1,...,ax}. The agent starts in either s1 4 Or 515
with equal probability. After taking h actions the agent is in
Sh41.ay Sh+1,b O Spt1,c. Informally, the states {s;, o},
and {sp 17, are “good” states from which optimal return
is achievable, while the states {s), . }7_, are “bad” states
from which an optimal return is impossible. Each good state
has a single good action, denoted wuy, for s, , and vy, for
Sh,b, Which transitions the agent uniformly to one of the
two good states at the next time step. All other good state
actions and all bad state actions lead to the bad state at the
next time. We fix the vectors u;.z, v1.; before the learning
process by choosing each action uniformly from A.

The agent receives a reward of 5 on taking action u g in
SH,q Or action vy in sy . Upon transitioning from one
good state to another good state at time step h € [H — 1],
the agent receives an anti-shaped reward of —1/(x#—1). For

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

-
o
5]

Decoding
Model

Autoencoder
Memorizes a

State Abstraction Noisy Bit

Model
¢ (2)) ———

-=- PPO

—&— PPO+RND

—%— DQN T T4 4 L
PCID
—e— HOMER e))

N
o

=
an

Max Horizon Length Solvable
g

0.2 0.4 0.

State bit Noisy bits

(a)

Number of ep

(b)

= NN

©

6
isodes te7

Figure 2: Left: Failure case for autoencoder training (see text and Appendix G for full discussion). Center: Results on the
diabolical combination lock problem showing horizon against number of episodes needed to achieve mean return of V(7")/2.
Right: Dynamics and abstraction for first 4 steps, learned by HOMER for H = 100 and K = 10.

many algorithms this structure leads the agent away from
the optimal policy. The agent receives a reward of 0 for all
other transitions. We have 7,,,;, = 1/2 and V (7*) = 4.

The agent never directly observes the state and instead re-
ceives an observation z € R? where d = 2/10g2(H+4)] R
generated stochastically. We add mean 0 and variance 0.1
Gaussian noise to a 2-sparse vector encoding the state and
timestep identity, then multiply with a Hadamard matrix.
See Appendix H for full details and environment figure.

Our main experiments consider H = 100 and |A| = K =
10. In this case, the problem is googol-sparse: the proba-
bility of finding the optimal return through random search
is 1071993 Moreover, for any fixed sequence of actions
the probability of an optimal return is at most 2~ where
T = Z;ffl 1{up # vp}. As uyi.g and vy.gy are chosen
randomly, we have E[7] = 90 in these instances.

HOMER implementation. We use non-stationary determin-
istic policies, where each policy is represented as a tu-
ple of H linear models 7 = (W, Ws,--- , Wy). Here
Wy, € RMIX4 for each h € [H]. Given an observa-
tion z € R at time step h, the policy takes the action
m(x) := argmax,c 4 (Wrx),. We represent a state abstrac-
tion function ¢ : X — [N] using a linear model B € R4,
Given an observation x we decode it to the abstract state
¢(r) = argmax;c;n)(Bx);. The regressor class F uses
a two-layer neural network with ReLu non-linearity and a
Gumbel Softmax operation on the output of ¢(z) to make
the model end-to-end differentiable. We make a few im-
plementation changes for empirical efficiency of HOMER
without changing key ideas. We provide full details of the
model, optimization and empirical changes in Appendix H.

Baselines. We compare our method against Proximal Policy
Optimization (PP0) (Schulman et al., 2017). PPO uses a

3For comparison, 10'°° is more than the current estimate of
the total number of elementary particles in the universe.

naive exploration strategy based on entropy bonus which
is often insufficient for challenging exploration problems.
Therefore, we also augment it with an exploration bonus
based on Random Network Distillation (RND) (Burda et al.,
2019), denoted PPO + RND. We also compare against Deep
Q Networks (DQN) (Mnih et al., 2015) which are a value
function method. Lastly, we consider the model-based al-
gorithm (PCID) of Du et al. (2019). Their approach makes
certain margin assumptions on the MDP which are violated
by this problem. We use publicly available code for running
these baselines. For details see Appendix H.

Results. Figure 2b reports the minimum number of episodes
needed to achieve a mean return of V(=*)/2 = 2.0. We
run each algorithm 5 times with different seeds and for a
maximum of 10 million episodes, and we report the median
performance. We run each method on increasingly longer
horizons until it fails to achieve a mean return of 2. As we
can see, PPO fails at H = 3 and DQN at H = 6 as expected
given their simple exploration methods. Adding RND bonus
is helpful, and PPO + RND can solve problems with H = 25,
but it fails at = 50. PCID fails at I = 3 showing that its
margin assumption is empirically limiting. Finally, HOMER is
able to solve the problem for all horizons. Figure 2¢c shows
the recovered dynamics for the first four steps. The top two
rows show the “good states" and the bottom row shows the
“bad states." HOMER is able to accurately find the canonical
form of the Block MDP, and using count-based statistics
we estimate the transition probabilities up to a maximum
error of 0.03. In Appendix H, we show the error bars, and
visualize the visitation probabilities.

We plot the moving average of returns against the number
of episodes on the diabolical combination lock problem
with H = 100 and K = 10 in Figure 3. We compare the
performance of HOMER against the best baseline PPO + RND.
The result shows that HOMER is able to learn the optimal
policy while PPO + RND fails to do so. Furthermore, the plot
of HOMER shows three distinct regions. The first region up

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

Statistics | V=1 N =2 N =3 N =4

Max o0 6.55 x 10% | 6.65 x 10° | 6.71 x 10°
Median 00 6.54 x 108 | 6.65 x 105 | 6.7 x 106
Min %) 6.53 x 106 | 6.63 x 10° | 6.69 x 10°

Table 1: Performance of HOMER on diabolical combination lock with I = 100 and K = 10. We vary the abstract state space
size (V') and report the number of episodes needed to achieve a mean return of V(7")/2. We report median, max and min
performance over five runs with different seeds. If the algorithm fails to solve the problem in 107 episodes then we report

the result as co indicating timeout.

41 —e— HOMER
—m— PPO+RND

Moving average of returns

1 2 3 4 5 6 7 8

Number of episodes 1e6
Figure 3: Results on diabolical combination lock with hori-
zon (H) of 100 and action space (K) of size 10. We plot the

moving average of returns against the number of episodes
for HOMER and PPO + RND. We have V (7*) = 4.0

to 10° episodes shows a decline in return as the algorithm
learns to explore. This is due to the negative antishaped
reward which occurs when moving from one good state
to the next. The second region between 10° and 3 x 10°
episodes is when the algorithm is learning a reward-sensitive
policy. This region shows an increase in returns. The last
region is when the algorithm is exploiting using the learned
policies and this consistently gives an optimal return of 4.

Performance on varying abstract state space size (N).
HOMER uses two hyperparameters: the size of the abstract
state space NN and an estimate 7) of the reachability param-
eter 7. In our main experiments, we implicitly search
over 7 by using different values of 1, and npgqp, but we
always use N = 2. We study the performance when vary-
ing N by running HOMER five times on different seeds for
different values of V. We set the other hyperparameters to
the best setting for H = 100 and K = 10. Results are given
in Table 1. We fail to solve the problem with N = 1, which
is expected since the entire observation space is mapped
to the same abstract state. However, we consistently solve
the problem for N > 2. This is consistent with our the-
oretical results where the only constraint on NV is that it
should be greater than Ngp. The diabolical combination

lock has two backward KI abstract states at each timestep:
one corresponding to the two good states {sp, 4, Spp} and
the other corresponding to the bad state sy, .. Hence, N > 2
is sufficient on a per timestep basis. Furthermore, we see
that HOMER does not use significantly more episodes when
doubling N from 2 to 4.

Reproducibility. Code and models can be found at
https://github.com/cereb-rl.

8. Conclusion

We present HOMER, a model-free RL algorithm for rich ob-
servation environments. We prove theoretical guarantees
for HOMER and provide proof of concept experiments on
a challenging domain. Applying HOMER to real-world RL
scenarios is a future work direction.

Acknowledgements. We thank Miro Dudik for suggest-
ing the oracle without bottleneck structures in Appendix E.
We thank Qinghua Liu for helpful feedback on the proof.
We thank Miro Dudik, Alekh Agarwal, Wen Sun, and Nan
Jiang for useful discussion. We thank Vanessa Milan for
help with Figures. We also thank Microsoft Philly Team
for providing us with computational resources and help for
running experiments.

References

Agarwal, A., Hsu, D., Kale, S., Langford, J., Li, L., and
Schapire, R. E. Taming the monster: A fast and sim-
ple algorithm for contextual bandits. In International
Conference on Machine Learning, 2014.

Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G.
Optimality and approximation with policy gradient meth-
ods in markov decision processes. arXiv:1908.00261,
2019.

Alon, N., Ben-David, S., Cesa-Bianchi, N., and Haussler,
D. Scale-sensitive dimensions, uniform convergence, and
learnability. Journal of the ACM, 1997.

Antos, A., Szepesvéri, C., and Munos, R. Learning
near-optimal policies with bellman-residual minimiza-

https://github.com/cereb-rl

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

tion based fitted policy iteration and a single sample path.
Machine Learning, 2008.

Azar, M. G., Osband, 1., and Munos, R. Minimax regret
bounds for reinforcement learning. In International Con-
ference on Machine Learning, 2017.

Bagnell, J. A., Kakade, S. M., Schneider, J. G., and Ng, A. Y.
Policy search by dynamic programming. In Advances in
Neural Information Processing Systems, 2004.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T.,
Saxton, D., and Munos, R. Unifying count-based explo-
ration and intrinsic motivation. In Advances in Neural
Information Processing Systems, 2016.

Boucheron, S., Lugosi, G., and Massart, P. Concentration
inequalities: A nonasymptotic theory of independence.
Oxford University Press, 2013.

Brafman, R. I. and Tennenholtz, M. R-MAX - A general
polynomial time algorithm for near-optimal reinforce-
ment learning. The Journal of Machine Learning Re-
search, 2002.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. Explo-
ration by random network distillation. In International
Conference on Learning Representations, 2019.

Chen, J. and Jiang, N. Information-theoretic considera-
tions in batch reinforcement learning. In International
Conference on Machine Learning, 2019.

Chen, R. Y., Sidor, S., Abbeel, P., and Schulman, J. UCB
exploration via Q-Ensembles. arXiv:1706.01502, 2017.

Dann, C., Lattimore, T., and Brunskill, E. Unifying PAC and
regret: Uniform PAC bounds for episodic reinforcement
learning. In Advances in Neural Information Processing
Systems, 2017.

Dann, C., Jiang, N., Krishnamurthy, A., Agarwal, A., Lang-
ford, J., and Schapire, R. E. On oracle-efficient PAC RL
with rich observations. In Advances in Neural Informa-
tion Processing Systems, 2018.

Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert,
M., Radford, A., Schulman, J., Sidor, S., Wu, Y., and
Zhokhov, P. Openai baselines. https://github.
com/openai/baselines, 2017.

Du, S. S., Krishnamurthy, A., Jiang, N., Agarwal, A., Dudik,
M., and Langford, J. Provably efficient RL with rich
observations via latent state decoding. In International
Conference on Machine Learning, 2019.

Givan, R., Dean, T., and Greig, M. Equivalence notions
and model minimization in markov decision processes.
Artificial Intelligence, 2003.

Hazan, E., Kakade, S. M., Singh, K., and Van Soest,
A. Provably efficient maximum entropy exploration.
arXiv:1812.02690, 2018.

Jaksch, T., Ortner, R., and Auer, P. Near-optimal regret
bounds for reinforcement learning. Journal of Machine
Learning Research, 2010.

Jang, E., Gu, S., and Poole, B. Categorical reparameteriza-
tion with Gumbel-Softmax. In International Conference
on Learning Representations, 2016.

Jiang, N. Notes on state abstractions.
//nanjiang.cs.illinois.edu/files/
cs598/noted . pdf, 2018.

http:

Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J.,
and Schapire, R. E. Contextual decision processes with
low Bellman rank are PAC-learnable. In International
Conference on Machine Learning, 2017.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. Is
g-learning provably efficient? In Advances in Neural
Information Processing Systems, 2018.

Jong, N. K. and Stone, P. State abstraction discovery from ir-
relevant state variables. In International Joint Conference
on Artificial Intelligence, 2005.

Kakade, S. M. On the sample complexity of reinforcement
learning. PhD thesis, University College London, 2003.

Kakade, S. M. and Langford, J. Approximately optimal
approximate reinforcement learning. In International
Conference on Machine Learning, 2002.

Kearns, M. and Singh, S. Near-optimal reinforcement learn-
ing in polynomial time. Machine learning, 2002.

Krishnamurthy, A., Agarwal, A., and Langford, J. PAC re-
inforcement learning with rich observations. In Advances
in Neural Information Processing Systems, 2016.

Langford, J. and Zhang, T. The epoch-greedy algorithm for
multi-armed bandits with side information. In Advances
in Neural Information Processing Systems, 2008.

Lattimore, T. and Hutter, M. PAC bounds for discounted
MDPs. In Conference on Algorithmic Learning Theory,
2012.

Li, L., Walsh, T. J., and Littman, M. L. Towards a unified
theory of state abstraction for MDPs. In International

Symposium on Artificial Intelligence and Mathematics,
2006.

Liang, T., Rakhlin, A., and Sridharan, K. Learning with
square loss: Localization through offset Rademacher com-
plexity. In Conference on Learning Theory, 2015.

https://github.com/openai/baselines
https://github.com/openai/baselines
http://nanjiang.cs.illinois.edu/files/cs598/note4.pdf
http://nanjiang.cs.illinois.edu/files/cs598/note4.pdf
http://nanjiang.cs.illinois.edu/files/cs598/note4.pdf

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

Maas, A. L., Hannun, A. Y., and Ng, A. Y. Rectifier non-
linearities improve neural network acoustic models. In
ICML Workshop on Deep Learning for Audio, Speech
and Language Processing, 2013.

Mccallum, A. Reinforcement Learning with Selective Per-
ception and Hidden State. PhD thesis, The University of
Rochester, 1996.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik,
A., Antonoglou, L., King, H., Kumaran, D., Wierstra, D.,
Legg, S., and Hassabis, D. Human-level control through
deep reinforcement learning. Nature, 2015.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
International Conference on Machine Learning, 2016.

Modi, A., Jiang, N., Tewari, A., and Singh, S. Sample com-
plexity of reinforcement learning using linearly combined
model ensembles. arXiv:1910.10597, 2019.

Munos, R. Error bounds for approximate policy iteration.
In International Conference on Machine Learning, 2003.

Nachum, O., Gu, S., Lee, H., and Levine, S. Near-optimal
representation learning for hierarchical reinforcement
learning. In International Conference on Learning Rep-
resentations, 2019.

Pathak, D., Agrawal, P.,, Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In International Conference on Machine Learning,
2017.

Ravindran, B. An Algebraic Approach to Abstraction in
Reinforcement Learning. PhD thesis, University of Mas-
sachusetts Amherst, 2004.

Ross, S. and Bagnell, J. A. Reinforcement and
imitation learning via interactive no-regret learning.
arXiv:1406.5979, 2014.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv:1707.06347, 2017.

Shangtong, Z. Modularized implementation of deep RL
algorithms in PyTorch. https://github.com/
ShangtongZhang/DeepRL, 2018.

Strehl, A. L. and Littman, M. L. An analysis of model-
based interval estimation for Markov decision processes.
Journal of Computer and System Sciences, 2008.

Strehl, A. L., Li, L., Wiewiora, E., Langford, J., and Littman,
M. L. PAC model-free reinforcement learning. In Inter-
national Conference on Machine Learning, 2006.

Tang, H., Houthooft, R., Foote, D., Stooke, A., Chen, O. X.,
Duan, Y., Schulman, J., DeTurck, F., and Abbeel, P. #Ex-
ploration: A study of count-based exploration for deep
reinforcement learning. In Advances in Neural Informa-
tion Processing Systems, 2017.

Tieleman, T. and Hinton, G. Lecture 6.5—RmsProp: Divide
the gradient by a running average of its recent magnitude.
Coursera: Neural Networks for Machine Learning, 2012.

https://github.com/ShangtongZhang/DeepRL
https://github.com/ShangtongZhang/DeepRL

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

Appendices
Symbol Definition
[N] Defines the set {1,2,--- , N} forany N € N.
AU) The space of probability distribution over the set I/.
Unf (U) A uniform distribution over the set /.
supp(p) Support of a distribution. For any p € A(U), we have supp(p) := {u € U | p(u) > 0}.
M Denotes a Block Markov Decision Process (Block MDP).
H Number of actions the agent takes for any episode.
S A finite state space of M. The process is layered, so states also encode the time step.
Sy, The set of states reachable at time step h. S := Une[m) Sp.
X The observation space. May be infinitely large, but is assumed to be countable.
X}, Set of observations reachable at time step h. X' := Up 1 Xh.
A The finite discrete action space of M
q An emission function ¢ : s = A(X). ¢(z | s) denotes the probability of
observing x in state s. Note that supp(q(+|s)) N supp(g(:|s’)) = @ when s # 5.
g* A decoder function g* : X — S. ¢*(z) = s iff g(x|s) > 0.
wu(s) Probability of starting in state s at the beginning of any episode.
T(s'| s,a) The probability of transitioning to s’ € S when taking actiona € Ain s € S.
A policy 7 : X — A(A), which may or may not be stationary.
(1, .., h) A h-step policy where the ¢ action (1 < ¢ < h) is taken according to 7.
IT The policy class, IT : X — A(A).
Ins The set of non-stationary policies: IIns := {(71,...,7g) : m¢ € II}.
P.(s) Probability of visiting s when following 7, from the starting distribution .
T Homing policy of the state s, 7} := arg max ey Pr(8).
Due to Lemma 2, we take 7} to be deterministic and non-stationary.
™ Analogous homing policy of the observation x, 7% := arg max cr Pr(2)
It is easy to see from the Block MDP assumption that 7 = 7% where s = g*(z).
V(m; R) Value for (non-stationary) policy 7 on reward function R from starting distribution g.
R may have type R: X = Ror R: (X x .A) — R and may also be stochastic.
V(s;m, R) and V(x;m, R) | Value functions for on R, defined over states or observations.
n(s) Maximum visitation probability for state s, n(s) := sup,.cp Px(s).
Nimin Reachability parameter, 7,5, := minges 1(s).
F Regressor class containing functions f from X x A x X — [0, 1].
Dy Decoder function class @ : X — [N], for a fixed N.
T Time function that maps states/observations to the time step where they are reachable,
which is well-defined due to the layered assumption.

Table 2: List of notations and brief definitions. Operators defined on states are lifted to observations in the natural way, e.g.,

plx) =32, m(s)q(|).

Notation and Overview. See Table 2 for an overview of the notation and definitions used in this appendix. The appendix
is structured as follows:

Appendix A: Properties of homing policies;

Appendix B: Properties of kinematic inseparability;

Appendix C: Basic results for Policy Search from Dynamic Programming (PSDP);
Appendix D: Analysis of the HOMER algorithm;

Appendix E: Recovering state abstraction from non-quantized model class via clustering;
Appendix F: Supporting results;

Appendix G: Failure Examples for Existing Methods;

Appendix H: Experimental setup, optimization details and additional results.

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

A. Properties of Homing Policies

In this section we prove some basic properties of homing policies. For this section only, we consider a fully expressive
policy set T := (X — A(A)). We further define the set of all deterministic policies Yge := (X — A). Clearly we have
T4t C Y. Note that both of these classes contain non-stationary policies due to the layered structure of the environments we
consider. In particular, we have (71, ...,7y) € T whenever 7r;, € T for all h, with a similar statement for Y ge;.

The first result is that for every state, there exists a deterministic non-stationary policy m € Y 4 that is a homing policy for
that state. This motivates our decision to restrict our search to only these policies in experiments. The result also appears
in (Bagnell et al., 2004), but we provide a proof for completeness.

Lemma 2. For any, possibly stochastic, reward function R, we have

max V(m; R) = max V(m; R),
TEY der meY

where V (m; R) is the value for policy under reward function R. In particular, the result holds for R(z) = 1{¢g*(z) = s},
forany s € S, which yields:

max P, (s) = maxP,(s).
weTﬁ =(8) TFE'%(=(8)

Proof. As T4 C T, that the LHS is at most the RHS is obvious. We are left to establish the other direction.

The proof is a simple application of dynamic programming. Assume inductively that there exists a policy 7. g € Y4 such
that, for any distribution Q € A(X},), we have

Ezpng [V (Fhem; R, xp)] > max Ep, g [V(mh.m; R, 1)),
Th.HEY

where the value function here denotes the future reward, according to R, when executing the policy from the starting
observation x;,. The base case is when h = H, in which case, it is easy to verify that the claim holds for the policy
T (rm) == argmax,c s E[R |).

Define the policy component for time step h — 1 as

Vap—1 € Xpo1: Tp—1(xp_1) := argn;‘aXE[R—&— V(Zhm; Ry xn) | €h-1]-
ac

Now for any potentially stochastic policy 75, —1.x, and any distribution @) € A(X},_1) we have

]Erh,f]NQ [V(ﬁ-h—le; Rv xh—l)} Z Emh,le [R + V(’ﬁ'hH, R, fEh) | a ~ ’/Th_l]
2 Ee_in@ [R+V(mnm; R, on) | @~ mpoq]
= EﬂlhleQ [V(ﬂ-h:H§ R, thl)} .

This proves the inductive step. We conclude the proof by noting that V' (7; R) = E,, .,V (7; R, z1), for which we have
established the optimality guarantee for 71.z7. O

We also observe that homing policies do not grow compositionally. In other words, we may not be able to construct homing
policies for states Sy, by appending a one-step policy to the homing policies for Sp,—1. Note that this holds even when
working with the unrestricted policy class Y. This observation justifies the global policy search procedure PSDP for finding
the homing policies.

For the statement, for a policy subset IT’, we use the notation A(IT") to denote the set of mixture policies that, on each
episode samples a policy 7 € II’ from a distribution and executes that policy. Note that this is not the same as choosing a
new policy from the distribution on a per time-step basis.

Lemma 3. There exists a Block MDP M a time step h € [H| and a state s € Sy, such that

77(8) > sup Pﬂminohﬂh (S)
Tuix€EA{Ts ses, 1)T €Y

Here T, is a mixture policy over the homing policies {7*}scs, _, for the states at time step h — 1, and oy, denotes policy
composition at time h.

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

observation
a,l 0 5 » S al Y a27 a3
0.5
A
el S5
S1 — " 02 3 ai, az,as

..~'¢')..s A
as .- s S§4 — Sg
e S a17a27a3

Figure 4: A Block MDP example showing non-compositional nature of homing policies. The Block MDP has six states
S = {s1, 82, 83, S4, S5, S¢ and three actions A = {a1,as,as}. The agent starts deterministically in s;. Dashed lines
denote stochastic transitions while solid lines are deterministic. The numbers on each dashed arrow depict the transition
probabilities. We do not show observations for every state for brevity.

Proof. See Figure 4. The homing policy for s5 takes action a; in s1, which yields a visitation probability for s5 of 1.
However, the homing policies for states s2, s3, and s4 do not take action a; in s;. O

B. Properties of Kinematic Inseparability

In this section, we establish several useful properties for kinematically inseparable (KI) state abstractions. We recall the
definition of forward kinematic inseparability, backward kinematic inseparability, and kinematic inseparability below.

Definition S (Forward Kinematic Inseparability). Two observations x1,x2 € X are forward kinematically inseparable (K1)
if for every ' € X and a € Awe have T'(z' | x1,a) = T(2' | z2,a).

Definition 6 (Backward Kinematic Inseparability). Two observations x|, x5 € X are backward kinematically inseparable
(K1) if for all distributions u € A(X x A) supported on X x AandVx € X,a € Awe have

T(x' | z,a)u(z,a)
Pu(x,a| z}) = Py(x,a | 25), where P (z,a | ') == Zg},a T [8)u@,a)

P.(z,a | ') is the backward dynamics measuring the probability that the previous observation and action was (x, a) given
that the current observation is x' and the prior over (x,a) is u.

Definition 7 (Kinematic Inseparability). Two observations x|, x, are kinematically inseparable if for every distribution
u € A(X x A) with support over X x A and for every x,z" € X and a,a’ € A we have

Pu(z,a|2)) =Pyu(z,a | xy) and T(z"|2y,a")=T(" | xh,a).

Fact 2. Forward kinematic inseparability (KI), backward KI and KI defines an equivalence relation on X.

Proof. That these relations are reflexive, symmetric, and transitive, all follow trivially from the definitions, in particular
using the fact that equality itself is symmetric and transitive. O

Lemma 4. Let 1,29 € X. If g*(x1) = g*(x2) then x1 and x4 are KI. This implies that they are also forward KI and
backward KI.

Proof. Fixanyx € X,a € Aand u € A(X x A) with supp(u) = X x A. We show below that 21 and x5 are forward KI
and backward KI which together establishes that desired claim.

Forward KI: By the Block MDP structure, we have

T(x [z1,0) =T(x | g*(x1),0) = T(x | g"(22),a) = T(x | x2,0)

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

Backward KI: Again, using the Block MDP structure:

Py(z,a|z1) = T(I1|Ia)(12 _ q(z1 | g (x1))T (g(l‘l)‘xa)(Nz
E@ay~u [T(z112,0)] E@ay~u (@1 | g*(21))T(g* (1) | 7,a)]

T(g* (@) | wau(e,a) _ T(g(x) | 2 a)ulz,a)

E(raw[(9*(x1) | 2,a)] Ea)~u[T(g (xg)\xa)]
(z sa)u(z,a) T(xo | x,a)u(r,a)

q(z2 | g*(22)) *(? =Pu(z,a | x2). O

1) | =
IE(ra u[(‘))T((xl) ‘ z, a)] B]E(i,&)Nu [T(x2 | f,d)]

The next simple fact shows that observations that appear at different time points are always separable.

Fact 3. [f z, ' are forward or backward KI, then T(x) = 7(z'), where recall that T(x) denotes the time step where x is
reachable.

Proof. If h := 7(x) # 7(2') := W' then T'(- | z,a) € A(Xp41) while T'(- | 2’,a) € A(Xp+1), so these distributions
cannot be equal. A similar argument holds for Backward KI. O

Using the transitivity property for backward KI, we can consider sets of observations that are all pairwise backward KI. The
next lemma provides a convenient characterization for backward KI sets.

Lemma 5. Let X' C X be a set of backward KI observations. Then Ju € A(X) with supp(u) = X such that for all
2/, 2" € X' we have:
T |z,a) T(" |z a)

Ve e X,a € A, ED) = w@ 1

The converse is also true: if (1) holds for some w € A(X) with full support and all ', 2" € X' C X then X' are is a
backward KI set.

Proof. Fix i € A(X x A) with supp(@i) = & x A. Define u(z) := E; s)~a [T(| Z,a)]. Observe that by construction
u(z) > 0forall z € X. Leta’,z” € X’ then as 2’ and &’ are backward KI, we have that for all z € X, a € A:

T(" |z a)u(z,a) T(z'|z a)u(z,a)
EGga~a[T(@" [2,a0)] Ega~a[T(@ | T,a0)]
T |z,a) T(2'|wa)

u(z') u(x’)

For the converse, let & € A(X x A) have full support. Then we have

Pi(z,a|2") =Ps(x,a | 2') =

u(w;)T(m’ | z,a)u(x,a)
P (.’If a | .T/'l) (xl | T a,v)’l{(l; a,:) =~ — u(r2)(/) 2 = Pa(‘r’a’ | xé)’
2 L@y 2,0)a(@,6) SR T (x| #,a)a(%, a)
and so x1, xo are backward KI. O

We next show that an ordering relation between policy visitation probabilities is preserved through backward KI. This key
structural property allows us to use the backward KI relationship to find a policy cover.

Lemma 6. Let X' C X be a set of backward KI observations and let X{, Xy C X'. For any m,m3 € T, we have

Pry (X)) _ Pay (X))
Pry (X)) Py (%)

Proof. Assume that X’ C X}, for some h, which is without loss of generality, since if they are observable at different time

steps, then they are trivially separable. From Lemma 5, there exists a u € A(X’) supported everywhere such that for any

xy,xh € X’ we have: Tf(lllf)’a) = T(I(2|$ 9 for any x € X and a € A. Let 7 be any policy and define its occupancy
e

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

measure at time b — 1, £p,—1 € A(Xp—1 X A),as €p—1(x,a) := E, [1{z}—1 = x,ap—1 = a}]. Then for any fixed & € X’
and j € {1,2} we have

u(a’ u(X]
Fr () = B | 32 76 [0)| = Brne | 3 2070 | 0.0)| = 22 b,

@ €X] @ eX]
where the second inequality follows from Lemma 5. Re-arranging, we have that];P;' Ej?:; Eleg , and as the right hand side
™ 2 2
does not depend on 7, the result follows. O

Lastly, we show that a set of observations are backward KI, then a single policy simultaneously maximizes the visitation
probability to these observations. Moreover, we can construct a reward function for which this common policy is the reward
maximizer. Recall that T is the (unrestricted) set of all policies.

Lemma 7. Let X' C X be a set of backward kinematically inseparable observations. Then there exists a policy m € Y that

maximizes P (") simultaneously for all ' € X'. Further, this policy is the optimal policy for the internal reward function

R'(z,a):=1{zx € X'}.

Proof. Let x1,x2 € X’ and define 7 := argmax v Pr(x1). Let m2 € T be any other policy. Then, by Lemma 6, we have
]P)Tr(l'l) > Pﬂz (.231) = Pﬂ-(.ﬁg) >]P)Tr2 (.rg)

As the left hand side is true by definition of 7, we see that 7 also maximizes the visitation probability for x5. As this is true
for any x5, we have that 7 simultaneously maximizes the visitation probability for all z € X”.

Clearly, for this policy and the specified reward function R’, we have

ZR zh,ah]P ZIP’ XZIP = maxE

z'eXx’ r’'eXx’

ZR Th,ap] .

Here we are assuming X is countable, as we have mentioned. O

C. Analysis of Policy Search by Dynamic Programming

This section provides a detailed statistical and computation analysis of the Policy Search by Dynamic Programming (PSDP)
algorithm, with pseudocode in Algorithm 2. The main guarantee is as follows:

Theorem 4. Let (71,72, - ,7ip) = PSDP(¥, R, h,II,n) be the policy returned by Algorithm 2 using policy covers
U = {U,}" | where U, is an a-policy cover for S; and |V,| < N for all t € [h]. Assume that either R is an internal
reward function corresponding to time h + 1, or that R is the external reward function and h = H, and that Assumption 2
holds. Then for any ¢ € (0, 1), with probability at least 1 — hé we have:

V(#1p; R) > max V(mpp R) — LACSC where Apse := 4 w In <2|H|>
n

1 yeeey, TR ELT « 1)
The algorithm runs in polynomial time with h calls to the contextual bandit oracle.

Before turning to the proof, we state a standard generalization bound for the contextual bandit problems created by the
algorithm. These problems are induced by an underlying distribution @ over tuples (z, 7*) where 2 € X and 7 € [0, 1)1,
and a logging policy mo. Formally, we obtain tuples (x, a, p, 1) ~ Qiog Where (z,7) ~ Q, a ~ Tiog(x), p := Mog(a | x)
is the probability of choosing the action for the current observation, and r := 7#(a). In our application, we always have
Tog := Unf (A) so that p = 1/|.A|. Given a dataset of n tuples D := {(x;, ai, ps,73) } 7y (S Q1o0g, We invoke the contextual
bandit oracle, CB(D, II), to find a policy 7. The following proposition provides a performance guarantee for 7.

Proposition 5. Let D := {(z;, a;,p;, i)}y ud Quog be a dataset of n samples from a contextual bandit distribution Qg
induced by the uniform logging policy interacting with an underlying distribution Q). Let # = CB(D,II). Then for any
6 € (0,1), with probability at least 1 — 0, we have

E(z,m~olr(7(z)] > max E(e,m~q[F(m(z)] — Acse-

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

Proof. The proof is a standard generalization bound for contextual bandits (c.f., Langford & Zhang, 2008). We provide a
short proof for completeness.

For policy m, define R(r) := Eq [F(n(x))], 7:(7m) = w |A|1{a; = m(x;)}r;, and observe that the contextual
bandit oracle finds the policy that maximizes R(w) := 1 £ 3% 1 #i(m). The random variables 7; () satisfy the following
useful properties:

IRWARECEL LI

Unbiased: Eq,, [F(7)] = Eq el | 2)
og

= Eq [F(7(2))] .

Low variance: Var[f(m)] < Eq,, [#*(7)] < Eq [l{a 5

<Eq., ;“(””)}} — 4] Boyla = (@) = |4

Range: |7(7)| < | Al

Therefore, using Bernstein’s inequality (Proposition 10) and union bound we have that for any € (0, 1), with probability at

least 1 — §:
\vi — < — R JEEREREY —_ = .
m e Il, R(w) R(W)‘ n In (5 + " In 5 A

The contextual bandit oracle finds 7 that maximizes the empirical quantity 1:2(7r), so, by a standard generalization argument,
we have

7> R(m)— A > R(r) — A > —2A.
R(#) > R(m) A_ITIrIEaI%(R(ﬂ') A_nglg[(R(w) 2A

Of course as the reward vector is bounded in [0, 1] we always have R(7) > max,ecn R(m) — 1, which means that with
probability at least 1 — §, we have

R(7) > max R(m) —min {1,2A}.
TE

Finally, if 2A < 1 then 44| ln;ilnl/‘s) < 4/ AA ln;ilnl/‘s). This observation leads to the definition A... O

Proof of Theorem 4. Let wy, w5, -+ mj = argmaX,, eV (71.1;) be the optimal non-stationary policy, for reward
function R with time horizon h. PSDP solves a sequence of h contextual bandit problems to learn policies 7, fort = h, ..., 1.
The #™ problem is induced by a distribution Q; supported over X; x [0, 1] I which is defined inductively as follows: The
observations are induced by choosing a 7; ~ Unf(W,) and executing 7 for ¢ — 1 steps to visit ;. The reward given z; and
an action a € A is R(xj,41) where the trajectory is completed by first executing a from z; and then following ¢4 1.5, As
in Proposition 5, the contextual bandit dataset is induced by this distribution @); the uniform logging policy.

By Proposition 5 with probability at least 1 — hé, we have that for all ¢, 7; satisfies
E(T,F)NQt [F(ﬁ-t (l’))] > I;?eaﬁ(E(I,F)NQt [F(ﬂt(x))] - ACSC7
where @ is as defined above. Using the definition of ()¢, this guarantee may be written as

Vt € [h] : Egg, [V (x; rpen, R)] > meaﬁclEINQt [V(x;7 0 Tre1:h, R)] — Acse.

Define Q7 € A(AX}) to be the distribution of observations visited by executing 77.,_;. By the performance difference lemma
(Lemma 22) [c.f., Bagnell et al. (2004); Kakade (2003); Ross & Bagnell (2014)], we have

V(#1m; R) = V(nf; R ZEmQt (4377 © Fegren, R) — V(43 in, R)]

< ZEMNQ; V(@4 7 0 &rgrn, R) = V(@; Fun, R)),

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

where 77 (2) := argmax,c 4 E[R(z,a) + V(2¢41; Tq1.0, R) | & = @, a4 = al, for all z € X,. With this definition, the
inequality here is immediate, by definition of the value function.

Assumption 2 implies that 7} € II for each ¢, which is immediate for the external reward function. If we are using the
internal reward function with some h < H, then by construction the internal reward function is defined only at time i + 1,
so we may simply append arbitrary policies 7;,41. 7 without affecting the reward or the value function. Formally, we have

h
V(itrns R) = V(mipi R) < Eayngr V(27 0 #eprm, R) — V(@ fn, R))
t=1

il *
- ZE’”tNQt [Qt (@) (V(xg;7f o ftygr, R) — V(wy; Ten, R))
t=1 Qu(ze)
h *
° T - ~
< ;S;lt Qi((xg Ep,nq, |V (2677 0 o1, R) — V(2 7w, R)|]
h
Q7 (z¢)
< . t Ao,
<2 Qm |

The first line appends 7,41. 1 to the roll-out policy, which as we argued does not affect the value function for any policy.
The second line simply introduces the distribution @), that we used for learning 7;. The third line is Holder’s inequality, and
in the fourth line, we use the fact that 7} is pointwise better than 7, so we can remove the absolute values. Then we simply
use our guarantee from Proposition 5.

We finish the proof by using the policy cover property (Definition 2), namely that

sup Qi(ze) | _ b Prt, i [se] n(se) N
Zt Qt(xt) St \Tld Zweqft PW[St] s %an(st) «
Combining terms proves the theorem. O

D. Analysis for the HOMER algorithm

In this section we present the analysis for HOMER. The proof is inductive in nature, proceeding from time point h = 1 to
h = H, where for the h'" step, we use the policy covers from time points A’ = 1,..., h — 1 to construct the policy cover
at time h. Formally, the inductive claim is that for each h, given a-policy covers ¥y, ..., ¥, over Sy,...,Skp_1, the
h'" iteration of HOMER finds an a-policy cover ¥, for S;,. We will verify the base case shortly, and we break down the
inductive argument into two main components: In the first part, we analyze the contrastive estimation problem and introduce
a coupling to show that the supervised learning problem relates to backward kinematic inseparability. In this second part, we
use this coupling to show that invoking PSDP with the learned representation yields a policy cover for time point h.

The base case. The base case is that ¥, found by the algorithm is a policy cover over &;. This is easy to see, since for
any states s € Sy, we have 7(s) = u(s), where recall that p is the starting stat distribution. We can define ¥; to be any
finite set of policies, which immediately is a 1-policy cover, but since we never actually execute these policies, we simply
set ¥; = () in Algorithm 1 (line 1).

D.1. The supervised learning problem and a coupling

In this subsection we analyze the supervised learning problem induced by HOMER, which is a form of contrastive estimation
(line 11 in Algorithm 1). We reason about the Bayes optimal predictor for this problem, obtain a finite-sample generalization
bound, and introduce a coupling to elucidate the connection to backward kinematic inseparability. Fix a time point
h € {2,..., H} and inductively assume that we have « policy covers Uy, ..., ¥, _; over Sy, ...,Sp—1 respectively. For
the rest of this subsection, we suppress dependence on h in observations, that is we will always take x € Xj,_1, and 2’ € A,

The supervised learning problem at time £ is induced by a distribution D € A(X),_1, A, Xp, {0,1}), which is defined as
follows: Two tuples are obtained (x1, a1, x}), (z2, az, %) are obtained by sampling 71, 7o ~ Unf(¥;,_1), and executing

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

the policies 7; o Unf(.A) and 7 o Unf(A), respectively. Then with probability 1/2 the sample from D is (x1,a1, 2}, 1)
and with the remaining probability, the sample is (x1, a1, x5, 0). Let D(z,a,2’ | y) be the conditional probability of the
triple, conditional on the label y. Let p, € A(X},) denote the marginal probability distribution over 2/, that is pp, (z') :=
P ovn:r~unt (w,_,) 2], and let pp, 1 € A(AX},_1) be the marginal distribution over x, that is i, 1 () := Pryns(w, _,)[Z]-
These definitions are lifted to the state spaces S,_1 and Sy, in the natural way.

With these definition, we have

_ pn—1(2)

_ M (2) T(a'|z,a), D(z,a2" [y=0)= A ().

D(Z‘va’a‘r/ | Y= 1) T

Al
The first lemma uses the fact that ¥;,_; is an a-policy cover to lower bound the marginal probability py, (sy), which ensure
we have adequate coverage in our supervised learning problem.

Lemma 8. If U;,_1 is an a-policy cover over Sy,_1, then for any s € Sy, we have pp,(s) > ?\7'52‘)

Proof. For any s € S}, we first upper bound 7(s) by

n(s) = sup Pr(s)= sup > Prlsn_1]Eong(is,_r) | D m(a|2)T(s | sp_1,0)

mETlNs wellns

Sh—1€Sh—1 acA
< Z sup Pr[sp_1] Z T(s| sp-1,a) = Z 1(sp—1) Z T(s| sp—1,0a).
Sh_1ESKH_1 m€lns ac A Sh_1€ESKL_1 ac A

We can also lower bound py, as

IP)TrNUnf(\Ilh,l)[shfl] e} an(s)
pr(s)=) A T(s | sn-1,a) > NIA| > nsn-1)T(s | sn-1,0) > NA[
Sh—1€Sh_1 Sh—1€Sh_1
acA acA

Here the first identity expands the definition, and in the first inequality we use the fact that ¥;,_; is an a-policy cover. The
last inequality uses our upper bound on 7(s). O

The next lemma characterizes the Bayes optimal predictor for square loss minimization with respect to D. Recall that the
Bayes optimal classifier is defined as

* : 2
f = arg;rllnE(m,a,z’,y)ND (f(x’ a, xl) - y) }

where the minimization is over all measurable functions.

Lemma 9. The Bayes optimal predictor for square loss minimization over D is
T(g*(2") | g*(2),a)
T(g*(2') | g*(2),a) + pn(g*(2’))

Under Assumption 2, we have that f* € Fy for any N > Ngp.

r(z,ya,2") =

Proof. As we are using the square loss, the Bayes optimal predictor is the conditional mean, so f*(z,a,z’) = Eply |
(z,a,2")] = D(y = 1| &, a,2"). By Bayes rule and the fact that the marginal probability for both labels is 1/2, we have

D(z,a,2' |y=1) T(x' | z,a)
D =1 N — s &y _)
(v | 2,0,2) D(z,a,2' |y=1)+ D(z,a,2' |y=0) T(z'|z,a)+ pp(a’)
_ T(g*(2') | g*(x),a) -

T(g*(2') | g*(2),a) + pn(g*(2’))”

Now that we have characterized the Bayes optimal predictor, we turn to the learning rule. We perform empirical risk
minimization over n iid samples from D to learn a predictor f € Fn (We will bind n = ny, toward the end of the proof). As
Fn has pointwise metric entropy growth rate In NV (Fy, €) < cody In(1/¢), a standard square loss generalization analysis
(see Proposition 11) yields the following corollary, which follows easily from Proposition 11.

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

Corollary 6. For any § € (0, 1) with probability at least 1 — §, the empirical risk minimizer, fbased n iid samples from D
satisfies*

2
K, {(f(x, 02— e a#"))? < Dy with Ay = 16 (In [® x| + N?|A|In(n) + In(2/s)) .

n

Proof. The proof follows from a bound on the pointwise covering number of the class F. For any € > 0 we first form
a cover of the class Wy by discretizing the output space to Z := {e, ..., |!/e]e}, and letting Wy be all functions from
[N] x A x [N] = Z. Clearly we have [Wx| < (1/e)N"MI, and it is easy to see that Wy is a pointwise cover for Wy. Then
we form Fy = {(z,a,2") — w(¢(z),a,¢'(z')) : w € Wy, ¢, ¢’ € P}, which is clearly a pointwise cover for Fy and
has size |® y|?|Wx|. In other words, the pointwise log-covering number is N2|A|In(1/¢) + 21n |® x|, which we plug into
the bound in Proposition 11. Taking ¢ = 1/n there the bound from Proposition 11 is at most

2
9 n 161In ‘@N‘ + 8N |A| ln(n) + 8111(2/5) < Areg- =
n

n

The coupling. For the next step of the proof, we introduce a useful coupling distribution based on D. Let Deoyp €
A(Xp—1 x A x X x &) have density Deoup (2, a, 27, 25) = D(x, a)pp(x])pr(xh). That is, we sample x, a by choosing
7 ~ Unf(P¥,_1), rolling in, and then taking a uniform action aj,—1 ~ Unf(.A). Then, we obtain z}, 2, independently by
sampling from the marginal distribution pj, induced by D.

It is also helpful to define the shorthand notation V' : &), x &), x Aj,_1 x A — R by

T(g*(@}) | g*(x),a) T(g*(x3) | g*(x),q)
pr(g*(x7)) pn(g*(zy)

V(xy, 2, x,a) ==

This function is lifted to operate on states Sy, in the natural way. Note also that, as p,, () > 0 everywhere, V' is well-defined.
Observe that V is related to the notion of backward kinematic inseparability. Finally, define

bi = Earny, [LS () = 11

which is the prior probability over the learned abstract state i, where (523) is the learned abstraction function for time h
implicit in the predictor f . In the next lemma, we show that (ﬁgB) approximately learns a backward KI abstraction by relating
the excess risk of f to the performance of the decoder via the V' function.

Lemma 10. Let f =: (w, gZJELF_)l, AgB)) be the empirical risk minimizer on n iid samples from D, that is the output of
REG(Fn, D). Under the 1 — 0 event of Corollary 6, for each i € [N]| we have

Ep,, [Ho (@) = i = 67 (1)} [V (a1, 25, 2,0)]| < 8V/biBrey.

!

Proof. For the proof, it is helpful to introduce a second coupled distribution Dy,

in which x, a are sampled as before,
but now x}, =, % (- | z,a), instead of from the prior. Note that this condition probability is D(z' | z,a) = 1/2q(z’ |
g*(x)) (T(g*(z") | g*(x),a) + pr(g*(z’))). To translate from Doyp to DY, we expand the definition of V' and introduce

coup
f*. The main observation here is that V' is normalized by pj(-) but f* is normalized, essentially by D(- | z,a).

pr(xo)T(h | 2,a) — pn(a))T (2 | =, a)
pn () pn ()
_AD@ @)D |2 a)
- Ph(mﬁ)Ph(xlz) (f ([ad) 1) f ([ad) 2))

V(xlla CC/Q,(ﬂ, a) =

4 As we remark in Appendix F, sharper generalization analyses are possible, with more refined notions of statistical complexity. Such
results are entirely composable with our analyses.

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

The last step follows since, in the first term the emission distributions cancel, while the cross terms cancel when we introduce
the least common multiple in the term f*(z,a,z}) — f*(x, a, x}). Specifically

(@,a,2h) - f(@,a,ah) = Ig*(z1) | 9" (x), 2) T(g*(zh) | g*(2), a)
o T (g () [t (@),0) + pn(g* (@) (g (@) [9% (@), 0) + pn(g*(ah)
pr(g*(| (

Nevertheless, this calculation lets us translate from Deoup to Dy, while moving from V' to f*. For shorthand, let
;= 1{¢(B)(N=i= (B)(xQ)}, so the above derivation yields

Ep & |V(1'/1,$/2,.’£,a)|] =4Ep;,

cuup[i [5 |f*(m,a,x'1)ff*(x,a,a:;)ﬂ. ()

Coup
Now that we have introduce f*, we can introduce f and relate to the excess risk
EDéoup [57, : ‘f*('ra a, x&) - f*(xa a, l‘é)”
<Bpy, [& (| a) = Foa,0)| + [0 28) = fo,0.20)

=Ep, [&- (| @.a.0) - f@.aa))| + | (@a.25) - flz.a,2))

)
)

}<%ﬁﬂDKﬁmwww—ﬂ%%f01

< 2Ep [} (@) = i} | (2. a,2') = f(z,a,2')

2/biAyeg.

The first step is the triangle inequality. The key step is the second one: the identity uses the fact that under event &;, we know

that ¢(B)(= (B)(), which, by the bottleneck structure of f, yields that f(z,a,z) = f(x, a,x}). In the third step we
combine terms, drop the dependence on the other observaiton, and use the fact that D/ shares marginal distributions with

coup
D. Finally, we use the Cauchy-Schwarz inequality, the fact that E Dl{gf)gB) (z') =i} = b;, and Corollary 6. Combining
with (2) proves the lemma. O

An aside on realizability. Given the bottleneck structure of our function class Fy, it is important to ask whether
realizability is even feasible. In particular for a bottleneck capacity of N, each f € Fy has a range of at most N2|A|
discrete values. If we choose N to be too small, we may not have enough degrees of freedom to express f*. By inspection
f* has arange of at most |S|?|.A|, so certainly a bottleneck capacity of N > |S| suffices. In the next proposition, we show
that in fact V > Nip suffices, which motivates the condition in Assumption 2.

Proposition 7. Fix h € {2,...,H}. If x1,x1 € Xp_1 are kinematically inseparable observations, then for all ¥’ € X},
and a € A, we have f*(x1,a,2') = f*(x9,a,x’). Analogously, if x|, x}, € X}, are kinematically inseparable, then for all
x € Xp—1 and a € A, we have f*(x,a,z}) = f*(z,a,xh).

Proof. We prove the forward direction first. As x1, zo are forward KI, we have

* ~\ T(a?|x1,a) o T("f‘l’g,a) — *(20.a.7
F@na,8) = e S T e @)~ TG [n0) +on(e) @2 @)

For the backward direction, as «/, 4, are backward KI, from Lemma 5 there exists u € A(X’) with supp(u) = X such that
T(zy|z,a) _ T(xh|w.a) u(z)

mE) uap) - Further, p, satisfies p(Th) = o)ph(xg) Thus, we obtain
T(x) | z,a) ZE?%T(JCQ | 2,a)
(z,a,2)) = T 1)—; o =) o = f*(z,a,5). O
zy | T, a) + pr(T) u(m;)T(‘Tz | z,a) + 11(7")ph()

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

D.2. Building the policy cover

Lemma 10 relates our learned decoder function ¢§§LB) to backward KI. For some intuition as to why, it is helpful to consider

the asymptotic regime, where n — o0, so that A,., — 0. In this regime, Lemma 10 shows that whenever d;ELB) maps two
observations to the same abstract state, these observations must have V' = 0 for all x, a. As our distribution has full support,
by Lemma 5, these observations must be backward KI. Of course, this argument only applies to the asymptotic regime. In
this section, we establish a finite-sample analog, and we show how using the internal reward functions induced by (JBI(LLB) in
PSDP yields a policy cover for Sp,.

The first lemma is a comparison lemma, which lets us compare visitation probabilities for two policies. To state the lemma
we will define a helpful quantity for any s € S,4 € [N]:

B .
Py =B, [HAP (@) =i A g"(a') = s}
Lemma 11. Assume Uy _1 is an « policy cover for Sp_1. Then for any two policies w1, o and any state s € Sy, we have

16N Alpn(s) }
reg .

phT(.S) (P (&) =i | m] - P& (o) = i ma]) + aP, b

i€[N] i

Pls | m] —P[s | m2] < min {

Proof. The key step is to observe that by the definition of V'

5 n bZT ! s
Vo2t Eapey, [LOP (0h) = i}V (ah g, 2.0)] = 31D (@) = 3T (a4 | ,0) - 2L02] 00,

o pr(x5)
Using this identity, we may express the visitation probability for a policy 7 as
Pls | 7] = E(zayur p_ Hg" (wh) = $}T (2 | 2, 0)
)
- b%Eu,awm;w 2 U (@) = 57 67@h) = i} (T(ah | 2,0) = pa(ah)V (2, 25, ,0))
Ty

Pr(8) o8 : 1 m(z,a) o, . B ,
= SR @) = il w) = PEp, | s e (@) = s A6 @) = V(@ b3, a))
Here we are using the shorthand 7(z,a) = P[z | 7]7(a |) for the policy occupancy measure, with a similar notation
the distribution D induced by our policy cover ¥;_;1. Using the inductive hypothesis that Wy _4 is a a-policy cover
(essentially Lemma 8), we have

m(x,a) :‘ Pla | 7] - m(a | x) ‘< ’ Plg*(z) | 7] < AN
D(xva) EW’NUnf(‘I/h,l)]P[x | 7T/] : 1/|A‘ o ET{' NUnf(\I/h 1)P[g () | 7T/] «
Combining, absolute value of the second term above is at most
N|A . .
e [140"(25) = 5 7 P () = i} [V (2 2,01

Let us now work with just the expectation. Recall that we can lift the definition of V' to operate on states s € Sy, in lieu of
observations. Using this fact, we have that under the probability 1 — § event of Lemma 10

Ep,., |[Ug"(@h) = s A7 (1) = i} V(@ 2,2,)l | = o (9)Be.aebagmpn | UL (@) = i} [V (2t 5.2.a)

R) E, 1{¢(B)(x’):iAg*(ﬂc’):s}
= Pr()E.a)~D.af~pn [1{@3” (2h) = i} [V (), 5, a)] =22 - 2
Pr(s .) " o
= # B, |1 (@) = i = 7 (e)}1{g" (2h) = s} |V(x179:27x,a)|}
Ph($ A 8p
S ;() COup |: {(Zsh () =1 = QSEZB)(ZJQ)} ‘V(.T/171‘/27aj a] < h ’L regs

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

Putting things together we get for any policy m;:

_ 8N|Alpn(s)
aP@,ibi

reg-

Bls | m] - 2P0) = i m)

Using the same bound for the second policy and combining the results we get the following inequality, which holds in the
1 — ¢ event of Corollary 6

s ~ . - _ 16N | Alpr(s
Pls | m] - Pls | n2] < 22 (B3 a!) = 1| ma) ~ PP (@) = i ma]) + ALK /R
bi aRe,ibi/2
As this calculation applies for each 7, we obtain the result. O
In the next lemma, we introduce our policy cover.
Lemma 12. Assume that Vq,...,Vy_1 are « policy covers for S1,...,S5—1, each of size at most N. Let V) :=

{71, 2@ € [N]} be the policy cover learned at step h of HOMER. Then in the > 1 — (1 4+ N H)0 probability event that the N
calls to PSDP succeed and Corollary 6 holds, we have that for any state s € Sy, there exists an index i € [N| such that

N2hA.. 16N3|AJP/2

Pls | @in] 2 0(s) = ——— — ——5 Areg/n(s)

Proof. Let us condition on the success of Corollary 6, as well as the success of the IV calls to PSDP. As the former fails
with probability at most §, and each call to PSDP fails with probability at most H§, the total failure probability here is
(1+ NH)6.

In this event, by Theorem 4, and the definition of the internal reward function R;, we know that

: NhA
3™ (@) = ilrin] > max PGP (2f) = ifn] — DL Dese

mellns o
Plugging this bound into Lemma 11, we get for any policy 7

Nhon($)Acse | 16N]Alpa()

P <Pls | #;
s | m) < Pls | &in] + ab; ozPS,ibz/z

VA ey

This bound also holds for all ¢ € [N]. To optimize the bound, we should choose the index 7 that is maximally correlated
with the state s. To do so, we choose i(s) = max; P; ;. This index satisfies

N
Z 1 Z pn(s)
bz(s) = Ps’,i(s) > Ps,i(s) = mzax Ps‘,i > N R‘i»i = N
s’ i=1

Plugging in this bound, we see that for every s, there exists ¢ € [IN] such that

N2hA e N 16N°/2| A

= P < P[s |7 A
1(s) = max Pls |] < Pls | il + > ~ o/ on(s)
We conclude the proof by introducing the lower bound on py,(s) > ?\}7'(;‘) from Lemma 8 and re-arranging. O

D.3. Wrapping up the proof

Lemma 12 is the core technical result, which certifies that our learned policy cover at time h yields good coverage. We are
basically done with the proof; all that remains is to complete the induction, set all of the parameters, and take a union bound.

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

Union bound. For each h € [H| we must invoke Corollary 6 once, and we invoke Theorem 4 N times. We also
invoke Theorem 4 once more to learn the reward sensitive policy. Thus the total failure probability is H (61 + N Hdo) + Hds
where d; appears in A4, 62 appears in A, for the internal reward functions, and 3 appears in A, for the external
reward functions. We therefore take §; = 6/(3H) and 65 = 53°7= and 65 = 53, which gives us the settings

Acsc =4

)

|A| <4NH2|H> 16 (1n(\<I>N\) + N2|A| In(nyeg) + 1n(6H/5))
In 3 , Apeg =

Npsdp Nreg

for the inductive steps. With these choices, the total failure probability for the algorithm is 6.

The policy covers. Fix h € [H] and inductively assume that ¥y, ..., ¥)_; are 1/2-policy covers for Sy, ...,S,—1. Then
by Lemma 12, for each s € S}, there exists ¢ € [N] such that

P[s | 7t.n]) > 1(s) — 2N2HA oe — 32V2N3 A2 [A ey /1(5).

We simply must set npeqp and 7, 0 that the right hand side here is at least 7(s) /2. By inspection, sufficient conditions for
both parameters are:

322N4H2|A AN H2|TI 5122 N6| A3
Mpsdp = 2 2 o (d | |) ' 2 Treg 2 37‘| N?|A|In(ngeg) + In|® x| +n(6H/5)
min =v J}n—/ =:c =:b

=:a

To simplify the condition for n., we use the following transcendental inequality: For any a > e and any b if v >
amax{cln(ac) + b,0} then 2v > acln(v) + ab. To see why, observe that

acln(v) + ab = acln(v/(ac)) + acln(ac) + ab < v — ac + acln(ac) + ab < 2v,

where the first inequality is simply that In(z) < 2 — 1 for 2 > 0, and the second inequality uses the lower bound on v.
Using the highlighted definitions, a sufficient condition for 7 is

5122N6| 43 5122 N8| A4

min

) +1n |y —|—1n(6H/6)> .

Npeg =2
min
Note that the algorithm sets these quantities in terms of a parameter 7 instead of 7,,,;,, which may not be known. As long
as 1) < Nmin our settings of npggp and nyeg certify that ¥y, is a 1/2-policy cover for Sj,. Appealing to the induction, this
establishes the policy cover guarantee.

The reward sensitive step. Equipped with the policy covers, a single call to PSDP with the external reward R and an
application of Theorem 4 yield the PAC guarantee. We have already accounted for the failure probability, so we must simply
set Neyar. Applying Theorem 4 with the definition of 3 = ¢6/(3H), we get

Tleval =

64N2H?|A| (3HH|>
5 In 5 .

€

Sample complexity. As we solve H supervised learning problem, make N H calls to PSDP with parameter npqp, and
make 1 call to PSDP with parameter n.y,, the sample complexity, measured in trajectories, is

H- Nreg + NHznpsdp + Hneyar =

~ (NS|A|*H NS|A|H NSH* Al N2H3|A
& (TS 4 XA a5y + (2L B)

3
Minin Nmin

min

Computational complexity. The running time is simply the time required to collect this many trajectories, plus the time
required for all of the calls to the oracle. If T" is the number of trajectories, the running time is

O (HT + HTimere (nreg) + N H>Timepo (psap) + HTimepor (Teva)) -

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

D.4. Learning Forward Kinematic Inseparability

Our analysis of HOMER only considered the abstraction (;ASzB) which we showed learns the backward kinematic inseparability
asymptotically and approximately in finite sample. This is sufficient for learning a policy cover and optimizing a given
reward function However, for recovering the dynamics and visualization we also need forward kinematic inseparability

abstraction. Here we argue that the cf)f_)l recovers forward kinematic inseparability asymptotically.

Lemma 13. As n — oo, the learned abstraction qAb;:i) 1 is a forward kinematic inseparability abstraction for X, _1.

Proof. As we argued earlier, we can inductively assume W,_; is an a-policy cover for Sy, 1. This implies the distribution
D in Corollary 6 has non-zero support over X1 x A X X}, and pj, has non-zero support over X}. Taking n — oo
in Corollary 6 then gives us f(z,a,z’) = f*(z,a,z’) for every (z,a,2') € Xp_1 X A x Xp. Say x1, 29 € Xp_1 satisfy

AELFjl(xl) = a}ﬁf)l(:@). From the structure of f this implies

Va € Av :I;/ € Xha f*(‘rlvavx/) = f(xlvavx/) = fA($27a7x/) = f*(;vg,a,x/).

Using the form of f* from Lemma 9 gives us:

T(x' | 21,a) B T(x' | x2,0a)

VYa € Az’ € &), =
CEAT R T ea) +n(@) | T [w2,a) + pule’)

= T(2' | x1,a) =T (2" | 22, a)

Lastly, for ' ¢ X}, and any a € A, we trivially have T'(z’ | z1,a) = T'(2' | 22,a) = 0. Hence, (/BELFZI learns the forward
kinematic inseparability abstraction asymptotically. O

E. Recovering State Abstraction from Non-Quantized Model Class via Clustering

In the main text we considered an oracle that recovers state abstractions {(QASELF_)l, qASElB))} I, by training a model class with

quantization. We showed that these state abstractions learn kinematic inseparability, and we showed that these optimization
problems are empirically tractable in our experiments, despite nonconvexity. However, in general training a model class
with quantization can be difficult. In this section, we show how to learn kinematic inseparability using a more standard
square loss optimization primitive, without any quantization. We establish a oracle efficiency guarantee as well as a sample
efficiency guarantee. However, the latter is worse than Theorem 1.

We consider a model class without quantization Fy : X x A x X +— [0, 1] with U denoting undiscretized. We assume F;
is finite and our bounds scale with In |Fi;|. We do not make any assumption on this model class besides the realizability
assumption f, € Fy for all p € A(S),) with supp(p) = Sy, for all h € [H] (see Assumption 2).

We focus on recovering the backward kinematic inseparability Q%LB) from training with model class Fi;. The forward KI

abstraction (%21 can be recovered similarly but we omit this treatment for brevity as HOMER only relies on qAbELB) for the
sample complexity guarantees.

Consider the h'" iteration of HOMER (Algorithm 1, line 2-line 15). Let D be a dataset of real and imposter transitions in the
h'" iteration (Algorithm 1, line 4-line 10). Let f be the empirical risk minimizer (ERM) given by:

f=REG(Fy,D) =argmin Y (f(z,a,2') —y)*. (3)
T€7Y (0,0, y)eD

Our computational assumption will be that REG(Fy;, D) can be implemented efficiently. This is a standard squared loss
minimization problem so we expect it to be easier than REG(F, D) as Fy is not quantized.

As we do not assume a bottleneck structure in Fy, therefore, we need to find a way to recover QASEIB) from f . We achieve this
using the algorithm ClusteredBKI (see Algorithm 3). ClusteredBKI takes as input the dataset D, the model class F;,
the policy cover ¥;,_; for the previous time step, the estimate 7 of 7),,,;,, and failure probability 4. The algorithm returns
the abstraction (;ASEIB) that we will show learns the backward kinematic inseparability, analogously to our proof using the
quantization oracle. This oracle can be easily used with HOMER by replacing a call to REG(Fx, D) (Algorithm 1, line 11)
with a call to ClusteredBKI(Fy, D, ¥y _1,7,6). The returned ¢?,(1B) can be used as before.

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

Algorithm 3 ClusteredBKI(Fy, D, Uy_1,7,) learns a state abstraction function using noise contrastive estimation with
model class Fy; without quantization, a dataset of real and imposter transitions D, a set of exploration policies for previous
time step WUy, _1, an estimate 7 of 7),,,;,,, and failure probability §.

1
_ 2N|A eN2|A| _ sm® (32 2|1Ful\)*
Sm === In (76 and T = 55z In 5

1: Set N = |Uy_,
2: f = REG(Fy, D) // Perform regression on D with model class Fy/
3 LetUd = (/M- 2/0™) where (), a(), 2/(V) ~ Unf(¥),_;) o Unf(A)
4: LetV = ((z™,aM), - (20 a(™)) where (2(V, a®, 2'®) ~ Unf(¥},_;) o Unf(A)
5. Define a feature functioné : X - R™as
Vo' € X,) = (f(z®,a®,2), -, f(z™ o™)
6: (c;)¥_, = GreedyClustering({&(«') | 2 € U}, ||.|1,7) // Cluster features generated by applying ¢ to U

,n=1|D

7: Define a state abstraction function (%LB) : X — Nas
vz e X, Ang)(ac’) = arg min; ¢y 1€(z") — eilly
8: return ¢§LB)

Algorithm 4 GreedyClustering(Z, ||.||,) Cluster vectors Z using distance function ||.|| and threshold 7

1: SetC =0 // Set of cluster centers
2: while Z # 0 do

3: Pick any z from Z

4. C+ Cu{z}

5: Define B,(z) = {2’ € Z| ||z — 2| <7} /I Set of points remaining in Z that are covered by z
6: Z=2Z-DB,(r)

7: return C

ClusteredBKI first computes the ERM solution in Equation 3 (Algorithm 3, line 2). We then sample a set of observations I/
and observation-action tuples V' using the sampling procedure Unf (¥} _;) o Unf(.A). Recall that (x, a,z’) ~ Unf(¥,_1) o
Unf(A) is generated by uniformly sampling a policy in ¥;,_; and roll-in with it for h — 1 steps to observe z, and taking action
a uniformly in x to observe x’. The set U/ contains =’ and V contains (z, a) sampled this way (Algorithm 3, line 3-line 4).
Both these sets contain i.i.d. entries and are independent of each other.

The key step to recovering qgng) is to perform clustering on a set of features where each cluster would represent an abstract
state. We first use f and the set V to define a feature function é : X — R™ (Algorithm 3, line 5). For any observation
2’ € X, the feature & (') is a vector of values f(z("), a(®), 2) where (z(), a()) € V. We do clustering on the set of features
{€(z') | «’ € U} generated by observations in I/ using the subroutine GreedyClustering (Algorithm 4). Intuitively, if
V has good coverage over states and actions at time step h — 1, and if f is trained sufficiently well then we can hope that
observations which are backward KI will have features which are close to each other. Similarly, for observations which are
not backward KI, we can hope the features will differ for at least some (z(), a(?)) € V.

The clustering subroutine GreedyClustering takes as input a set of features Z, a distance function ||.|| and a real number
7 > 0 denoting the size of clusters. We use L distance as our choice of distance function (Algorithm 3, line 6). Further,
we set 7 based on the size of dataset D which implicitly controls the generalization error of f (Algorithm 3, line 1).
The clustering subroutine repeatedly picks a feature z in Z and marks it as a cluster center by adding it to a set C
(Algorithm 4, line 3-line 4). It then removes every feature remaining in Z within 7 distance of z, which includes z, from Z
(Algorithm 4, line 6). The removed features can be considered as assigned to the cluster center z. This is repeated until Z is
empty which happens in at most | Z| iterations (Algorithm 4, line 2-line 6). The cluster centers C are returned as output.

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

The learned state abstraction ngS B x - maps a given observation z’ to the identity of the cluster center closest to é ()

(Algorithm 3, line 7). ClusteredBKI returns gbh as output.

E.1. Sample Complexity Analysis

We inductively focus on the task of learning (523) assuming we have an a-policy cover Wy _; for previous time step of
size N. This is similar to our analysis in Appendix D. We first analyze the performance of f . Recall that we learn f
using a dataset of real and imposter transitions sampled from D € A(Xj_1 x A x X}, x {0,1}). Further, recall that
pr(x") := Propnginmuvns(w,) [2'] and pp_1(2) := Prvae(w, _,)[2]. Let D(z, a, ') is the marginal distribution over real
and imposter transitions then:

D(r,0,0') = P | a) 4 (e}
2| A|
First, the standard supervised learning guarantees apply as stated in Theorem 8:

Theorem 8. Fix § € (0,1). Let D be a dataset of n i.i.d. real and imposter transitions and let f be the ERM solution
(Equation 3). Then the following holds with probability at least 1 — §:

R 2 2
Ewwp,h,l,awUnf,a:’Nph |:|f(xa a, 37/) - f*(xv a, x/)‘il S Acerr(na 6)7 Where Acerr(n7 5) = 3 1 (|§U|) . (4)

Proof. We use Proposition 11 for finite classes to first get the following with probability at least 1 — 4:

Ez a,2'~D {(f(x,a,x’) - f*(x,a,z’))z] < 71 (2|J‘§U|)

n

Here we use a trivial observation that N (Fy, €) < |Fy| for any € > 0. Next we use Jensen’s inequality to get:

Eyau~D [|f(x,a,x’) — f*(n@a,x’)ﬂ < \/]Ex’a’I/ND {(f(m,a,x’) — f*(x7a,x’))2] < \/i In <2|§U>

Lastly, using D(z, a,z") > %W we get the following with at least 1 — § probability:

3 * 32 2| Fi
Eonpis.amtntarmp, ||1(@50,0) = [(@,0.0)|] <4 /2 (lgvl)

For a given V), we define the “correct” feature function ¢ : X — R™ as:
Vi € X, £(z') = (f*(M, q@ g, ,f*(x(m)ﬂ(m)’x/)).

Our feature function £ is trying to approximate &. If we had access to ¢ then clustering the features {£(2/) | 2/ € U} with
7 = 0 would give us a cluster center for every backward KI state at timestep h, provided I/ and V have good coverage. This
holds since £ uses f* which only depends upon the KI state identity and not the actual observation. Our analysis will prove
that using f instead of £ also works with high probability.

E.1.1. ERROR BOUNDS FOR SAMPLED U/ AND V.

We want to bound the error induced due to imperfect f for sampled V and U.

Lemma 14 (Joint Conditional Error). Let V = ((z(M),a™M), ... (2™ a("™)). Then under success probability of Theo-
rem 8 the following holds for any e > 0:

Vk € [m], Eymp, [f(:c(k) a® 2"y — (2P a® 2

] <e,)

mAcerr (TL,(S)
e—

with probability at least 1 —

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

Proof. Forany k € [m], let W(z®) o) =E,/_,, [Fa® a®) 2y — f(a®) 0B 2)
have B,y anvns (W (2, a)] < Acerr(n,). We want to bound the following quantity:

Py (M, W@, a®) < e) > 1— Py (U, W(z®, a®) > ¢)

] . Then from Equation 4 we

>1- Z]P’v (W(a:(k), a(k')) > e) , (using union bound)
=1
1 . . :
>1—- Z Ezampn [W(z,a)], (using Markov’s inequality)
e

mAcerr (na 6)
76 .

>1- (using Equation 4) [
We use Lemma 14 to bound the expected error in é .

Lemma 15 (Expected Error in é). Fix e > 0 then under success probability of Theorem 8 the following holds with
mAcerr(n,0) |
e

probability of at least 1 —

Epnp [[€6") = €@l] < 2vmPe.

Proof. Let a > 0 be any number then:

Eatmpn {Hf(ﬂfﬁ) - é(%)”l} < ma + me’(Hﬁ(x') —{(@) 1 > ma), (using [[£(2") — €()[1 < m)
< ma + mP, (UZ”’:I ‘f(x(k)) fH(x (k) (k) .Z’/) > a)
< ma + mZIE” (’ F@® a® 2y — f(2® o® 2| > a) , (using union bound)
< ma+ m ZEI/NP}L Hf(x(k), a® 2"y — (™ o 2] , (using Markov’s inequality)
@ =
2
< ma + Te) (using Lemma 14).

The value of a that gives the tightest bound is \/me which gives an upper bound of 2v/m3e. The only probabilistic statement

we use is Lemma 14 which holds with probability of at least 1 — M. O
Lemma 16. (Pointwise Error in é) LetU = {x’(l), e ,x’(m)}. Fix u > 0. Then under success probability of Theorem 8
the following holds with probability at least 1 — mA“:(n’é) — 2m Vumse:
vie[m], [&@'") =D)L <

Proof. Let X; be the event that [|¢(2'®) — £(2/®)||; < u. Recall (1), - | (™) are independent samples from pj,. We
want to bound:

m —

PN, X;) =1 - P(UL,X;) > 1-) P(X5), (using union bound)
i=1

-ﬂ—ZPM““ @)1 > w)

>1- Z —Emprh {Hf(m’) - é(x')”l} , (using Markov’s inequality)
u
i=1
9 3
S A Al (using Lemma 15)
u
mA

mAcerr(n,0) 2mvm3e
- + e O

The failure probability due to Lemma 15 is %("’5) hence the total failure probability is

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

E.1.2. COVERAGE LEMMAS.

Let there be Nl((tl)) many kinematically inseparable abstract states at time step ¢ € [H|. We know that observations emitted by
a state are kinematically inseparable so NI%)) < |8y]. Also, trivially we have Ngl)) < Nkp. We denote KI states by index in

the set S; = [N{] and let ¢F : X — S, be the KI abstraction function.

We start by showing that V has good coverage over S;,_1 x A with high probability.

Lemma 17 (Coverage Lemma for V). Fixd € Nand 6. € (0,1). Let V = ((x 1) ¢)) (™) a(™)). Then with at
least 1 — . probability, for each j € S—1,a € Awe have |{(z®,a) e V| ¢5_, (D) =jAnaD =a}| > dif

N1
e A (M) ©

Proof. The proof is a standard Chernoff bound argument. Let X , be the event [{(z(),a() € V | ¢%_ (V) = jAaW) =
a}| > d. Let Zj(lg be a 0-1 random variable that is 1 if ¢ _,(2(?)) = j and a(¥) = a and 0 otherwise. Our aim is to bound:

P(ﬂjeéh,l,aeAXj,a) =1- P(UjeS;L,l,aeAXma) >1- Z]P)(Xj’a) =1- Z P <Z Zg(l()z < d) :

JESh_1,0€A jESh_1,0€A i=1

Forany j € Sj,_1 and a € A, {Z;’la), e ,Zj(.jz)} are 0-1 i.i.d. random variables. Define §; , := EV[ZJ(-;]. We derive a
lower bound on the value of 0; ,:

anmin

00 =Pz.a(ph_1(F) =jANa=a)=Pz(¢;_1(T) = j)Pal@ =a) > NA

where we use the fact that Wy _; is an a-policy cover of Sh 1, any KI abstract state j contains at least one real state,

|¥;,_1| = N and actions are taken uniformly. Letw = 1 — W We will assume w > 0O ie., m > 4 > ZglAl This can

be ensured by choosing a sufficiently large value of m. Then using multiplicative Chernoft’s bound we have:

4 (i mo; 4w?
(S) =p (S5 <0 come) <o)

=1 =1

We can bound the upper bound using lower bound on §; ,.

mb; qw? mbj d? mb;q AMT)min
_MW5a L _ e < e < - —_fmn L
exp { 5 } exp { 5 2mi; . +dy <exp 5 +dp <expqd ON|A|

Plugging this bound we get:

P(Njes, 1 .acaXia) > 1— Ny VAl exp {d_ am??m}

2N A]

As we want the failure probability to be at most J. therefore, we set:

N(E=D)
(h 1 AMMmin | _ S 2N|A| 1 |A|
\A| exp{ TONA] } <b.=>m> pr— d+1n 756 .

This bound also satisfies m > ed needed for application of Chernoff’s bound. O

Similarly, we can prove a coverage result for U.

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

Lemma 18 (Coverage Lemma for If). Fixd € Nand §. € (0,1). LetU = {'V -~ 2/(™)}. Then with at least 1 — 5.
probability, for each j € Sy, we have |{z'") € U | ¢7 (2'D) = j}| > d if

(h)
m>W{d+1n<Ag‘D>}. (7)
ANmin c

Proof. Proof is similar to Lemma 17. For any j € Sy, let X be the event |{z'(") € U|¢} (') = j}| > d and Zj(i) isa0-1
random variable which is 1 iff ¢} (2/(?)) = j. Then similar to Lemma 17 we have

P(Njes,Xj) =1 —P(Ujeghfj) >1- Z P(X;)=1- Z P (i Z](i) < d) .

JESH JESH al

For any j € Sy, {Z](-l)7 e ,Z](-m)} are 0-1 random variables. Define 3; := Ey [Zj(z)] We derive a lower bound on f3;

below:
ANmin

NIAJY

where we use the fact that abstract state j contains at least one state (say s;) and the lower bound on pj,(s;) from Lemma 8.

B) = By (2] = Bgrp, 1" = 1] >
This lower bound is the same for §; , in Lemma 17 therefore, we can borrow the calculations we did there to get:

N () AMMNymin i ") AMNmin

setting the failure probability to be at most .. gives us the derived result. O

Combining Lemma 18 and Lemma 17 we get a lower bound on m of:

(h—1) (h)
. W{dmx{m (NlAi) n (N)}}
AMmin 60 (SC

which can be weakend into a simpler form below using max{In(a),In(b)} < In(a) + In(b) = In(ad) for a,b > 1 and

N > Ngp > maX{Ng{l), NI(!]L))}. In summary, the bound is
2N iN?
m > Al In (e |A|) . ()
ANmin de

E.1.3. OTHER LEMMAS.

We now want to bound the difference between ||€(x) — £(x%)||1 for two observations that are mapped to the same abstract
state in terms of difference between their f* values. We achieve this with the next result. Recall the coupling distribution
Deoup € A(Xp—1 X A X &), x A},) introduced in Appendix D. For any given (z, a, 2, z5), we have Deoup (2, a, 2, z5) =
fin—1() g pn (2 pr(2h). We define the distribution D € A(Xj,—1 x A) as D(x,a) = pp—1(2) g We can lift D to
states or abstract states in the natural way. It is straightforward to see that Deoup (2, a, 27, 25) = D(z, a)pr () pr(25).

Lemma 19 (Difference in f*). Fixd. € (0,1) and d € N. LetV be the sampled set and qgéB) be the learned state abstraction.
Assume |V| = m satisfies lower bound in Equation 8. Then the following holds:

Ev,as Doy | MO (@1) = 32 @)} [(2, 0,05) = [* (@, a,08)]| <

1 N R
Bt i, [U (@) = 67 @5)}I(ah) - €@

with probability of at least 1 — 0. over draws of V.

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

Proof. Let ¢(j,a) = [{(z®,a®) € V| ¢7_, (™) = j,a® = a}|. Recall that ¢ and f* only depend upon the KI
abstract state identity and not the observation. Therefore,

Evyagmpn | WA (@) = 37 @h)}IE() — €)1

Eut g opn [1&1323)(%’1)=$2B)(wé)}2|f*(x(k),a) — (=), %m]
k=1

= > B U (@) = P @)} (0P, a®),2) = £ (2, 0P, a)]|
k=1
= Y Y G By, [(@) = AP @R)HS G0 3) = S Gas)]

jESH_1 a€EA

= 2>

jESH_1aEA

E%,?)Du, OBaf ymp, [(@) = O @)} 7 (o0 2h) = £ (G,)

v
=
=

(B 2 (B * [- .
i D Bt D MO (#) = 87 GOHI G 0,20) = £ G,

(B - (B .
0o 00 Dy [HOR (1) = 07 ()} (2, 0,20) = (2, 0,25)]
(using ¢(j’,a’) > d from Lemma 17, Deoyp(j’, a’) < 1 and putting x back instead of j)

Y

The proof is completed by noting that Lemma 17 holds with probability at least 1 — §.. O
We now prove the result for the clustering oracle that will be useful later. Note that the clustering subroutine (Algorithm 4)
provides the following guarantee:
Clustering Guarantee: V' € U, 3¢;, such that ||€(z) — ¢]l1 < 7 9)
Lemma 20 (Clustering Performance). Fix e,u > 0 and learned abstract state j € N. Then
Eurnpn |1y (@) = JHIE@) = ¢l] < 2VmPe 4+ u + by, (10)

MmAcerr(n,0) — 2v/mbe
e u :

with probability at least 1 — 6, —

Proof. From Lemma 18 there exists at least d observations for any KI state in S;, with probability at least 1 — & for any
d. € (0,1) and d > 1, provided m satisfies bound in Equation 8. We can therefore, assign an observation ' € X, to an
observation (z') € U that has the same KI state. Observe that £(r(z')) would be one of the vectors that is given as input to
the clustering algorithm (Algorithm 3, line 6).

Eunp | U (@) = HIEG) - ¢l
= Euoep, 1{¢3§LB>(;U’): j}rg%ﬁ”é(x')—ciﬂl], (using the definition of () = arg min;e) |§(2") — csl|1)
= Eupe [1626) = 3} min {16 - cill = 1€ = el + 1ECe() — il
< B |10 =) min {16 €N + 106D ~ i} (using wiangle inequatity)

= Eap [HHP @) = 5HE) = EGENI] +Earnp [1{&23><x'>=j};g;g]|£<n<m’>>—ci||1}

< B [HOP (@) = HIER) = €@] + Barmp, [1{6P) = 5} 7]
(using clustermg guarantee in Equation 9)
< Earmp |I6@) = EGs(@ Il + by,

(using the definition of b; = Ey/), [1{(]35?)(95’) = j}} and 1{(%33) (') =4} <.

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

We can bound the first term as follows:

Evrnpn |I6) = €@ h] < Barnpy [1E@) = €@ | + Barnp 1E() = E0s(2))I1] +

Term 2

Term 1
Eyinp | I€(5(2")) = &k () 1

Term 3

We bound these terms separately below:

Term 1 Is bounded by 2vm3e using Lemma 15.

Term 2 For any 2’ € X}, we have ¢} (z')
&(z') = &(k(2)). This means Term 2 is 0.

¢5 (k(2")) whenever « is defined. As ¢ depends upon f* therefore,

Term 3 Fix v > 0 then using Lemma 16 we have:

Earmpy |1€(5(27)) *EA(H(I’))IIJ < Eorpy [Ig[% 16(2"D) = "1 | < w.

Plugging this gives a bound of 2v'm3e + u + b;7. The failure probability due to Lemma 18 is ., due to Lemma 14 is

mAcerr(n,9) MmAcerr(n,0) 2vmbe |
e u :

and due to Lemma 16 is LZ‘SE This gives us success probability of at least 1 — . — ;

We want to make sure that there are only a small number of clusters. Let N](;]L)) be the number of backward kinematically

inseparable states at timestep 7. We know Ngf)) < |S|. If 2 and 2%, come from backward kinematically inseparable states
then for any x € X, a € A we have f*(z,a,2}) = f*(x,a, z5). This further implies £(z}) = &(z5). Therefore, we would
hope that the number of clusters are at most Nl(;f)) with high probability. We show this with the next result.

Lemma 21 (Number of Clusters are Small). If 7 > 2u then under success of Lemma 16, we have k < Ng}’)) ie.,

GreedyClustering subroutine outputs at most Ngg clusters.

Proof. Say z!, x5 € U come from backward kinematically inseparable states then £(z}) = £(«%). Therefore, from triangle
inequality and Lemma 16 we have:

1E(25) — €2l < N1€(2h) = E@)ln + €(as) — &)l < 2u.

Observe that this holds for any pair of observations in ¢/ that are backward kinematically inseparable, with success probability
of Lemma 16.

Consider the behaviour of GreedyClustering when 7 > 2u. The moment we pick any vector é (z}), we are assured to
have all remaining observations in Z that are backward kinematically inseparable to =} in B, (£(z])) (Algorithm 4, line 5).
These observations will then be removed from further consideration. Therefore, the algorithm can output at most as many

clusters as there are backward kinematically inseparable states which is Ngg. It can however, output much fewer clusters
if we pick 7 to be too large (e.g., picking 7 > m leads to 1 cluster). The proof is completed by observing that the only
probabilistic statement we assumed is Lemma 16. O

E.2. Main Result

3/
Theorem 9 (Main Theorem). Assume m > %W In (%) and T = %ﬁ"(n’&). Then we have:
AC@T’T (n7 5)

EpaapasmDuun | MR (1) = 347 (@)} |f*(2.0,05) = f* (@0, 2p)]| < 32m? | 2ot

(1)

and there are at most N abstract states. Both claims hold with probability at least 1 — 5.

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

Proof. For any x|, x, we have from triangle inequality:
I€(24) = &)l < €)= &)l + €)= €)1+ [1€(x5) — ECas)lh (12)

Multiplying by 1{¢(z}) = ¢(x4)} on both sides and taking expectation with respect to pj, we get:

Euyagmp, |H{O(1) = S HIE@D) — €@] < Bagagmp, [LAD (1) = P (@) HIED) — €)1

Term 1

+Eu g | U @) = 87 (@) HIE(H) — €)1
Term 2

+ Eug g [HO @) = 37 (@) HIE(eh) — () 1
Term 3

It is easy to see that Term 1 and Term 3 are the same. We bound these below.
Bounding Term 1 and Term 3 : We bound these terms using 1{&2]3)(;10’1) = quB)(x’Q)} < 1 and Lemma 15.
Eay apn | HOR (@) = 82 (@) HIE() —)] < Bag g (1) — €G] < 29/mPe
Bounding Term 2
Eup sy [UO (@) = 6 <x’2>}ué<xa> — €G]
- ZEml,w2~ph (107 (1) = T (@) = THIERD) — e+ ¢ — €)1

IN

ZE%,%% U (@) = 1 @ >—y}||§<x1>—c]||]
ZEI/M,% {0 (1) = YD (@) = dHlle; — €@h)li| . (using wiangle inequality)
= 22&/1% [1{617 @) = 331817 (a3) = HIERD) — ¢
_ 2ijEmg~ph [1{¢(B)() = HIE@) —¢ill] . (using definition of b;)
< 2ibj{2¢77%+u+bjf}, (using Lemma 20)
J

= 4Vm36+2u—|—72b?
J

IN

dvmde +2u+T, (using } . b; = 1and b; > 0)

We plug the bounds for these terms in the triangle inequality result. Further, the left hand side of the triangle inequality can
be lower bounded using Lemma 19. This gives us:

N - 1
B gDy [UOD (1) = 40 (@)} (2 0,0%) — [,08)] < 5 {8vmPe + 20+ 7}

mAce'r'r(n §) 2\/m56
u

The proof is completed by noting that the total failure probability from union bound is § + 24, +

which consists of: § due to Theorem 8, %("6) due to Lemma 15, failure probability due to Lemma 16 in addition to

2\/m e

that of Lemma 15 is and combined failure probability due to Lemma 18 is and Lemma 17 is 24..

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

Remaining step is to set the hyperparameters. We set them as follows (not optimal necessarily) which gives the desired error
bound along with lower bound on m using Equation 8.

mACETT (n7 6) mAcerr(“» 5)

d=1; de = 6; e= = — 5
1) e
4m3\/Acerr (1, 6) 2vmbe 8m3\/Acerr (1, 6)
u= 5 = " <4, T=2u=>"T= 5

Lastly, as we assume 7 = 2u therefore, from Lemma 21 we have at most N](gD) many clusters (or equivalently learned

abstract states) which we assume is less than N (the input to the algorithm). O]
Wrapping up the proof The main theorem almost gets us to Lemma 10. If we can bridge this gap then we can reuse the
rest of the analysis from Appendix D. We show how to get the same left hand side as Lemma 10 below.

Recall the definition of V' : &), x &), x Xj,—1 X A — R from Appendix D given below:

T(g*(z1) | g*(z),a) T(g*(z3) | g*(2),a)
pn(g* (7)) pn(g*(xh))

V(x), 2, x,a) ==

Using the structure of f* from Lemma 9 we can easily show:

pr(g*(x1)) pr(g*(z5))
T(g*(«)) | g*(x),a) + pn(g*(x})) T(g*(24) | g*(2),a) + pr(g*(25))

‘V(l.a’xé’x’a)‘

‘f*(x’avill) - f*(xva’xé” =

Using the lower bound on pj, from Lemma 8 and using T'(¢g*(z) | ¢*(z),a) + pn(g*(2’)) < 2 then gives us:

2
* * AMmin
P@aat) - oam)] = (S) 1V ,o.0

Plugging this inequality in Theorem 9 gives us the following with probability of at least 1 — 54:

Acerr(n,6) <2N|A|>2

B B)
Bot Do MO (21) = 67)}V) < 2m?y [Serge (20

For any ¢ € [N], we trivially have 1{¢E§LB)(ac’1) =i= (B)(N} < 1{(255?) () = q@f) (24)}, which gives us:

. o Acerr(n,6) (2N|A[\?
Bt Do [(01) == P) V(.0 < 32ty Seemed) (2L

53 AMmin

Now we have the same left hand side as in Lemma 10, therefore, we can proceed the same way as we did in Appendix D.
The only difference is that we have a different right hand side now. However, this only effects the final guarantees and not
the proof technique which is identical to Appendix D from here. The final guarantees we obtain are still polynomial but
worse than in Theorem 1. We omit repeating the technical steps for brevity.

F. Supporting results

The next lemma is the well-known performance difference lemma, which has appeared in much prior work (Bagnell et al.,
2004; Kakade, 2003; Ross & Bagnell, 2014; Dann et al., 2017). Our version, which is adapted to episodic problems, is most
closely related to Lemma 4.3 of (Ross & Bagnell, 2014). We provide a short proof for completeness.

Lemma 22 (Performance difference lemma) For any episodic decision process with any reward function R, and any two
non-stationary policies 71'9;{ and 7T1 H, let Q € A(Xy) be the distribution at time h induced by policy 71'()
have

. Then we

H

1 2 1 2 2
V(ﬂ-i)H’ R) - V(ﬂ.§])-[) = Z]Ewh"‘QELl) |:V(Z'h, ﬂ-}(],) © ﬂ-}(LleiH) - V(l’h; 77}(13‘[):| .
h=1

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

Proof. The proof is a standard telescoping argument.

1 2 1 1 2 2 2
V(i R) — V) =Vt R) — Viat onl)i R) + Viat) onl)i R) — Vin))

= V(Y onll R) = V() +E,, om0 |V(rshs R) = V(rihi R) |

The result follows by repeating this argument on the second term. O

The next result is Bernstein’s inequality. The proof can be found in a number of textbooks (c.f., Boucheron et al., 2013).

Proposition 10 (Bernstein’s inequality). If Uy, ..., U, are independent zero-mean random variables with |U;| < R a.s.,
and L 31 Var(Uy) < 02, then, for any 6 € (0, 1), with probability at least 1 — § we have

n 2
let < 2021n(1/9) n 2R1n(1/6).
n n 3n

The next proposition concerns learning with square loss, using a function class G with parametric metric entropy growth rate.
Let D be a distribution over (x, y) pairs, where x € X’ is an example space and y € [0, 1]. With a sample {(x;, ;) }7; “p
and a function class G : X — [0, 1], we may perform empirical risk minimization to find

n

N R o1
g := argmin R,,(g) := argmin — Z(g(xz) —)% (13)
geg geg M

The population risk and minimizer are defined as

g* := argmin R(g) := argmin E(zy)~p(g(z) — y)2.
geg geg

We assume realizability, which means that the Bayes optimal classifier z — Ep[y |] is in our class, and as this minimizes
the risk over all functions we know that g* () is precisely this classifier.

We assume that G has “parametric” pointwise metric entropy growth rate, which means that the pointwise covering number
at scale e, which we denote NV (G, ¢) scales as N (G,¢) < ¢odIn(1/¢e), for a universal constant co > 0. Recall that for a
function class G : X — R the pointwise covering number at scale ¢ is the size of the smallest set V' : X — R such that

Vg€ G,FveV suplg(z) —v(z)| <e.

With the above definitions, we can state the main guarantee for the empirical risk minimizer.

Proposition 11. Fix 6 € (0,1). Let § be the empirical risk minimizer in (13) based on n samples from a distribution D. If
G is realizable for D and has parametric entropy growth rate, then with probability at least 1 — § we have

E(oa)en |(0@) = 9 ()°] < Areg, with Areg = inf { e W} |
The result here is a standard square loss excess risk bound, and it is perhaps the simplest such bound for well-specified
infinite function classes. Sharper guarantees based on using empirical covering numbers, combinatorial parameters (Alon
et al., 1997), or localization (Liang et al., 2015), are possible, and completely composable with the rest of our arguments.
In other words, if a bound similar to the one in Proposition 11 is achievable under different assumptions (e.g., different
measure of statistical complexity), we can incorporate it into the proof of Theorem 1. We state, prove, and use this simple
bound to keep the arguments self contained.

Proof. Define

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

Using the realizability assumption that E[y |] = ¢*(z), it is easy to verify that

E[Zi(9)] = E[g(2)* — ¢"(2)? — 2y(g(z) — g"(2))] = E[(g(z) — g"(2))?].
The variance is similarly controlled:
Var[Zi(g)] < E[Zi(9)°] = E[(9() + g"(x) — 29)*(9(2) — g"(2)?]
< 4E[(g(z) — g*(2)?] = 4E[Z;(9)],

where we use that y, g(x), g* () are in [0, 1]. Therefore, via Bernstein’s inequality (Proposition 10), with probability at
least 1 — § we have

E[Z(g)] In(2/6) n 21n(2/4) '

n n

<2

(14)

1
- > Zi(g) - E[Z(g)]
For the uniform convergence step, we show that Z;(g) is a Lipschitz function in g:

Zi(9) = Zi(g')] = | (g g’ () (9(i) + g' (i) — 292)%| < 4g(2:) — ¢/ ()],

where we again use that y;, g(z;) and ¢’ (x;) are in [0, 1].

Now let V' be a pointwise cover of G at scale ¢, so that for any g € G there exits vy € V such that:
sup vy () — g(z)| < e.
xr

By our metric entropy assumptions, we have that [V| < N (G, e) < ¢4, For any g € G we have

% i Zi(g) <e+ % i Zi(vy) < e + E[Z(v,)] + 2\/E[Z(“gﬂ h“(nw(g’ £)f9) 2 ln(2,/\/'7i(], £)/9)
=1 i=1
MCNG /D) g oprzy ¢ SN G0/

n n

<e+2E[Z(vg)] +

Here we are applying (14) uniformly over the pointwise cover, using the fact that 2v/ab < a + b, and using the pointwise
covering property. Similarly we can control the other tail

E[Z(g)] < = + E[Z(0,)] < <+ z": Zi(wg) + 2\/]E[Z(vg)] ln(ij\/'(g,e)/é) N 21n(2NT(LQ,£)/5)
| | ANEN(G,9)/9)
g e n

Re-arranging and putting the two bounds together, the following holds simultaneously for all g € G, with probability at least
1-946

n

%E[Z(Q)]—%—% %zn:) <2E[Z UHS&HLM' 0

G. Can We Use Existing State Abstraction Oracles?

Our analysis verifies the utility of the backward KI state abstraction: it enables efficient reward-free exploration and it can
be learned using contrastive estimation procedure as shown with HOMER. Do other, previously studied, state abstractions
admit similar properties?

In this section, we discuss prior approaches for learning state abstractions. In Block-MDPs, we show that these approaches
fail to find a policy cover when interleaved with a PSDP-style routine used to find policies that visit the abstract states,
following the structure of HOMER. Note that it may be possible to embed these approaches in other algorithmic frameworks
and successfully explore.

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

“ (1]o]o] 10]--]0)
1L s3 5 ||
: Decoding
N Model
0.5_1 81 ay S4 Q1 57 Autoencoder
! State Abstraction Mi‘mp "zBe.f a
Model oSy Bl
“a ¢'(z')) ——o
05 S2 @2 sy 42 S8
/
v 1]
a a
2" g6 2 VN
State bit Noisy bits
(@) (b) ©

Figure 5: Counterexamples for prior work on abstraction/representation learning. We do not show observations for brevity.
Left: A Block MDP where predicting the previous action from observations (Pathak et al., 2017) or predicting the previous
abstract state and action fails (Du et al., 2019). Middle: A Block-MDP where the model-based algorithm of Du et al. (2019)
fails. Right: Illustration of a failure mode for the autoencoding approach of Tang et al. (2017), where optimal reconstruction
loss is attained by memorizing noise. See text for more details.

Predicting Previous Action from Observations. Curiosity-based approaches learn a representation by predicting the
previous action from the previous and current observation (Pathak et al., 2017). When embedded in a PSDP-style routine,
this approach fails to guarantee coverage of the state space, as can be seen in Figure 5a. A Bayes optimal predictor of
previous action a given previous and current observations x, 2’ collapses the observations generated from {s3, s4}, {5, S6},
and {s7, sg} together. To see why, the agent can only transition to {ss, s4} by taking action a1, so we can perfectly predict
the previous action even if all of the observations from these states have the same representation. This also happens with
{ss5, s} and {s7, sg}. Unfortunately, collapsing observations from {s7, ss} together creates an unfavorable tie-breaking
scenario when trying to find a policy to visit this representation. For example, the policy that takes action a7 in s; and s3
and as in s and sg deterministically reaches s7, so it visits this representation maximally, but it never visits sg. So this
approach for representation learning, interleaved with policy optimization, does not yield a policy cover.

Predicting Previous Action and Abstract State. Instead of predicting the previous action, Du et al. (2019) learn a
representation by predicting the previous action and previous abstract state. As they show, this approach provably explores a
restricted class of Block-MDPs, but unfortunately it fails in the general case. For example in Figure 5a, a Bayes optimal
predictor collapses observations from {s1, so}, {53, s4}, {5, S6}» and {s7, ss}, leading to the same failure for policy
optimization as the curiosity-based approach. This state collapse is caused by a stochastic start state; {s1, s2} cannot be
separated by this approach and using the joint representation for {s1, s2} as a prediction target causes a cascading failure.
Note that Du et al. (2019) assume a deterministic start state in their analysis.

Instead of a PSDP-style routine, Du et al. (2019) use a model-based approach for building a policy cover, where the learned
policies operate directly on the abstract states. Actually this approach avoids the tie-breaking issue in policy optimization
and does succeed for the example in Figure Sa, but it fails in Figure 5b. If policies are defined over abstract states, we must
take the same action in s and s2 (as this approach can never separate a stochastic start state), so we can reach {ss3, s4}
with probability at most 1/2, while a policy operating directly on observations could reach these states with probability 1.
Chaining this construction together shows that this approach can at best find an a-policy cover where « is exponentially
small in the horizon.

Training Autoencoders. The final approach uses an autoencoder to learn a representation, similar to Tang et al. (2017).
Here we representation ¢ and decoder U by minimizing reconstruction loss dist(x, U(¢(x))) over a training set of raw
observations, where dist is a domain-specific distance function. Figure 5¢ shows that this approach may fail to learn a
meaningful representation altogether. The problem contains just two states and the observations are d-dimensional binary
vectors, where the first bit encodes the state and the remaining bits are sampled from Ber(1/2) (it is easy to see that this is a
Block-MDP). For this problem, optimal reconstruction loss is achieved by a representation that ignores the state bit and
memorizes the noise. For example, if ¢ has a single output bit (which suffices as there are only two states), it is never worse
to preserve a noise bit than the state bit. In fact, if one state is more probable than the other, then predicting a noise bit along
with the most likely state results in strictly better performance than predicting the state bit. So a representation using this

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

approach can ignore state information and is not useful for exploration.

Bisimulation. A number of other abstraction definitions have been proposed and studied in the state abstraction literature
(c.f., (Givan et al., 2003; Li et al., 2006)). The finest definition typically considered is bisimulation or model-irrelevance
abstraction, which aggregates two observations x1, xo if they share the same reward function and the same transition
dynamics over the abstract states, e.g., for each abstract state s', T'(¢(z') = s’ | x1,a) = T(¢(a’) = s | x2, a), where ¢ is
the abstraction. A natural reward-free notion simply aggregates states if they share the same dynamics over abstract states,
ignoring the reward condition. There are two issues with using bisimulations and, as a consequence, coarser abstraction
notions. First, the trivial abstraction that aggregates all observations together is a reward-free bisimulation, which is clearly
unhelpful for exploration. More substantively, learning a reward-sensitive bisimulation is statistically intractable, requiring a
number of samples that is exponential in horizon (Proposition B.1 in Modi et al. (2019)).

An even finer definition than bisimulation, which has appeared informally in the literature, aggregates two observations if
they share the same reward function and the same transition dynamics over the observations (Equation 2 in Jiang (2018)).
The reward-free version is equivalent to forward kinematic inseparability. However, we are not aware of any prior work that
attempts to learn such an abstraction, as we do here.

Summary. These arguments show that previously studied state-abstraction or representation learning approaches cannot
be used for provably efficient exploration in general Block-MDPs, at least when used with a HOMER-like algorithm. We
emphasize that our analysis does not preclude the value of these approaches in other settings (e.g., outside of Block-MDPs)
or when used in other algorithms. Moreover, the remarks here are of a worst case nature and do not necessarily imply that
the approaches are empirically ineffective.

H. Experimental Setup, Optimization Details and Additional Results

Emission Process in Diabolical Combination Lock The agent never directly observes the state and instead receives an
observation 2z € R? where d = 2/1eg2(H+4)] generated stochastically as follows. First, the current state information
(whether it is of type s, q4, S.b OF Sp,) and time step (h) are encoded into one-hot vectors which are concatenated together
and added with an isotropic Gaussian vector with mean 0 and variance 0.1. This vector is then padded with an all-zero
vector to lift into d dimension and finally multiplied by Hadamard matrix of order d. A Hadamard matrix of order d, denoted
H,, is a d x d matrix with entries in {—1, +1} and mutually orthogonal rows. As d is a power of 2, hence we can construct
H L H.

H; using Sylvester’s method which defines H; = lH IE] forany ! € Nand H; = [1].
l - 1
3 3
Note that diabolical combination lock is not strictly a Block MDP setting as the same observation can be emitted from two

states although with a small probability. Our experiments, therefore, test the resilience of our results to small violation.
Problem Figure We visualize the diabolical combination lock problem in Figure 6.

Modeling Details for HOMER. As stated before, we use non-stationary deterministic policies, where each policy is represented
as a tuple of H linear models 7 = (Wq, Wa,--- ,Wg). Here W), € RIAIXd for each h € [H]. Given an observation
x € R? at time step h, the policy takes the action 7(z) := argmax, ¢ 4 (Wh)q.

We want to recover a forward and a backward abstraction from the model class F using the REG oracle. However, our
theoretical results never assume that these are recovered from the same model. For example, the analysis of learned backward
abstraction QASEIB) in Appendix D does not use the fact that the model f also has a forward abstraction <;AS§LF_)1. This allows us to
train two different models with single bottleneck, for recovering forward and backward abstraction separately. Empirically,
training a model with a single bottleneck is easier than a model with two bottlenecks. We implement these two model class
in a similar way barring the place where we place the bottleneck.

We now describe the model details for recovering gZAJELB Vx> [N]. We represent the state abstraction function gZA)gB) X —
[N] using a linear model B € RV *4 with giAJELB) (2") = arg max;e[n)(Bz');. Given a tuple (z,a,z") we form a vector by
concatenating Az, 1,, and z together, where A € RM>*4 1, is the one-hot encoding of the action, and z; o< exp((Bx');+g;)
applies the Gumbel softmax trick (Jang et al., 2016) to convert Bz’ into a probability distribution (g; is an independent
Gumbel random variable). Then we pass the concatenated vector into a two layer feed-forward neural network with
leaky rectified linear units (Maas et al., 2013) and a softmax output node to obtain the prediction. We generate softmax

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

. ﬁ ‘B Observation
.. E.. E .

Anti-Shaped
Reward

Step 1 2 EICRRRR 100

Figure 6: Illustrates the diabolical combination lock problem which contains multiple challenges including sparse anti-
shaped rewards, rich-observations, long horizons and extremely sparse good rewards. We do not visualize the observations
for every state for brevity.

probabilities instead of a scalar value as we train the model using cross-entropy loss instead of squared loss (described later).
The parameters of the model include the weight matrices A, B that form the abstraction, as well as the parameters of the
feed-forward neural network.

The model class that recovers q{)ﬁ are similar to the one for recovering (bh) The only difference is that for a given tuple
(z,a,z") we apply the Gumbel softmax trick to Az instead of Bxz'.We allow the capacity of the forward and backward
abstractions to be different, i.e., M and NN can be different.

Efficient Implementation of HOMER We make a few empirical changes to make HOMER more practically efficient. This
includes changes to improve the computational-complexity and sample-efficiency.

Computationally-Efficient Implementation of HOMER. As stated, the most computationally expensive component of HOMER
is the O(NH) calls to PSDP for learning the policy covers. This has a total computational cost of O(N H>npqp +
Timepol (npsap) N H?), but in practice, it can be significantly reduced. Empirically, we use two important optimizations:
First, we parallelize the N calls to PSDP for optimizing the internal reward functions in each iteration of the algorithm
(Algorithm 1, line 12-line 15). Second and perhaps more significantly, we can attempt to find compositional policies using
a greedy search procedure (GPS). Here, rather than perform full dynamic programming to optimize reward 2; j,, we find
the policy 7, for the last time step, and then we append this policy to the best one from our cover ¥;,_;. Formally, we
compute 71,1 = argmax, g, , V(T o @p; Ry), where V (+; R) is the value function with respect to reward function
R and o denotes policy composition. Then, since the optimal value with respect to R;j is at most 1, we check if
V(f1:n—107h; Rip) > 1 —e. If it is we need not perform a full dynamic programming backup, otherwise we revert to PSDP.
GPS may succeed even though the policies we are trying to find are non-compositional in general. In the favorable situation
where GPS succeeds, actually no further samples are required, since we can re-use the real transitions from the regression
step, and we need only solve one contextual bandit problem, instead of H. Empirically, both of these optimizations may
yield significant statistical and computational savings.

Statistically-Efficient Implementation of HOMER. The pseudocode stated in Algorithm 1 spends two episodes to create a single
datapoint for the REG subroutine (Algorithm 1, line 5-line 10). This only effects our sample complexity bounds by a factor of
2 but in practice this is undesirable. Therefore, we use a more sample-efficient data collection procedure in our experiments.
Firstly, we collect a set of 7, i.i.d. observed transitions {(x;, a;, :cg)}n“ using our sampling procedure (Algorithm 2, line 5),
and we create imposter transitions by resampling within this set. The procedure to create imposter transitions is based on
whether we are training a model class to recover gz@EZB) or QAS(F) When training the model with bottleneck on 2’ (i.e., to

TNreg

(B . oy ~
recover ¢§1), we create imposter transitions {(z;, a;, &;) }; where for each 4, & is chosen uniformly from {z,... 2, }.

The dataset for performing contrastive estimation is then given by {([mz, ai, 2],)} U {([2i, ai, #7],0)} % . Similarly,
when we are training the model with bottleneck on x (i.e., to recover d) h)1) we create imposter transitions {(Z;, @;, =})}Z’fl
where where for each i, #; and ; are chosen uniformly from {z1,..., 2, } and {ai, ..., an,, } respectively. The dataset

for performing contrastive estimation, in this case, is given by {([x;, a;, ¥}], 1) };~4 U {([:cz, ai,t],0)}.=* . We use the same

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

set of observed transitions to create the dataset for training both models.
Learning Details for HOMER. We describe the details of the oracle and hyperparameter below:

Implementing REG oracle: We implement the REG subroutine by performing supervised binary classification instead of
regression. Formally, we train the model f(2’,a,z) on a training data {(z;, a;, 7, y;) } /=% as shown below:

Mreg

max Zln{yif (@i, ai, z7) + (1 —yi) (1 — f (i, 5, 77) }

feFN nreg =1

We use Adam optimization with mini batches. We separate a validation set from the training data. We train the model for a
maximum number of epochs and stop when the best validation performance doesn’t improve for a certain fixed (patience)
number of epochs. We use the model with the best validation performance. We found that learning is more stable if we
initialize the model by first training without the quantization step. This is achieved by not performing the Gumbel softmax
trick and directly using the underlying vector (e.g., using Bz’ instead of z when learning (;32]3)). The two training procedures
are identical barring the quantization step in the model.

Implementing CB oracle: We learn policies for the CB subroutine by training a model to predict the immediate reward
using mean squared loss error instead of performing cost-sensitive classification. This is equivalent to one-step Q-learning.
Formally, we train a model Qg : X x A — R on training data {(z;, a;, pi, ;) }.>y as shown below:

Mpsdp

max — > (Qo(wi i) — i)

& Mpsdp Py

The policy corresponding to @y deterministically takes the action arg max,e 4 Qo (x, a). We use Adam optimization with
mini batches. Similar to REG, we train for a maximum number of epochs and stop when the best validation performance does
not improve for a certain fixed (patience) number of epochs. We use the model with best performance on the validation set.

The changes mentioned above do not change the key idea of HOMER which is to iterate between learning kinematic
inseparability abstraction using a form of noise contrastive learning, and planning using the PSDP algorithm. These changes
simply help to make the algorithm empirically more appealing by providing computational and statistical advantages.

We search for optimal hyperparameters using grid search. We search for n., over {5000,10000} and nyeqp over
{10000, 15000, 20000}. We do not optimize other hyperparameters. For each hyperparameter setting, we run the algorithm
five times with five different seeds. We use the median performance for finding the best hyperparameters. Hyperparameter
values for the diabolical combination lock problem with H = 100 can be found in Table 3. We run the algorithm on GPU
clusters containing Nvidia P100, V100 and 1080ti GPUs. It took approximately one day to run HOMER for H = 100.

We use the PyTorch library (version 1.1.0) for implementing HOMER.®> We use the standard mechanism provided by PyTorch
for initializing the parameters.

Learning Details for PCID. We use the code made publicly available by the authors.® PCID uses a model for predicting the
previous state and action and performs k-means clustering on the predicted probabilities. We experimented with both linear
models and feed-forward networks provided by authors. We optimized hyperparameters using grid search. We search for
learning rate over {0.01,0.05,0.001}, and the data collection hyperparameter (n) used by their state decoding algorithm
over {200, 1000, 10000}. The other hyperparameters were set to values recommended by the authors who evaluated on a
combination lock problem similar to ours. We list the hyperparameter choice in Table 4.

Learning Details for PPO and PPO + RND. We train each baseline for a maximum of 10 million episodes. All baseline
models use fully-connected, 2-layer MLPs with 64 hidden units and ReL.U non-linearities. For each baseline, we used the
RMSProp optimizer (Tieleman & Hinton, 2012) and tuned learning rates over {0.01, 0.001,0.0001}. For PPO + RND, the
random networks were 2-layer MLPs with 100 hidden units and ReLU non-linearities. We found that tuning the intrinsic re-
ward coefficient A; was important to obtain good performance, and performed a search over A; € {1, 10,100, 1000, 10000}.
We found that A\; = 1000 performed best and used this value for all experiments. We experimented with applying a
running normalization to the intrinsic reward as described in (Burda et al., 2019), but found that this did not improve over

Shttps://pytorch.org/
Shttps://github.com/Microsoft/StateDecoding

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

Table 3: HOMER Hyperparameters

Hyperparameter Value

Learning Rate 0.001 (for both REG and CB)

Batch size 32 (for both REG and CB)

TNyeg We sample 10, 000 observed transitions from which
we generate additional 10, 000 imposter transitions.

Npsdp 20,000

N (capacity of a backward state abstraction model) 2
M (capacity of a forward state abstraction model) 3

Maximum epochs for REG 200

Maximum epochs for CB 40

Validation data size (REG) 20% of the size of training data for REG.
Validation data size (CB) 20% of the size of training data for CB.
Hidden layer size for F 56

Gumbel-Softmax temperature 1

Table 4: PCID Hyperparameters

Hyperparameter Value
Learning Rate 0.01
n 200

Number of clusters for k-means 3

using the unnormalized intrinsic reward. We also experimented with higher entropy bonuses for PP0 with H = 6, but
this did not yield any improvement so we kept the default value of 0.01 for subsequent experiments. We used the PP0
implementations provided in (Shangtong, 2018) and kept other hyperparameters fixed at their default values. We list the
hyperparameter values for PPO and PPO + RND in Table 5. We found the best choice of hyperparameter was not dependent
on H. All experiments were run on a cluster of Nvidia P100, V100 and 1080ti GPUs. Running the PPO + RND experiments
for H = 100 took approximately 10 days.

Table 5: PPO and PPO + RND Hyperparameters

Hyperparameter Value
Learning Rate 0.001
Rollout length H

v 0.99
TGAE 0.95
Gradient clipping 5
Entropy Bonus 0.01
Optimization Epochs 10
Minibatch size 160
Ratio clip 0.2
Extrinsic Reward coefficient A g 1.0

Intrinsic Reward coefficient \; (for PPO + RND) 1000

Learning Details for DQN. We used the OpenAl Baselines (Dhariwal et al., 2017) implementation of DQN. We tuned learning
rates over the {0.01,0.001,0.0001} and the e-greedy exploration fraction over {0.01,0.001,0.0001}. The networks were
2-layer fully-connected MLPs with 64 hidden units. We also experimented with adding parameter noise, but this did not
improve performance. All other hyperparameters were kept at their default values and are shown in Table 6.

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

Table 6: DQN Hyperparameters

Hyperparameter Value
Learning Rate 0.001
Exploration Fraction 0.001
Replay Buffer Size 50000
Target Network Update Frequency 500
Prioritized Replay true
Prioritized o 0.6
Prioritized g 0.4
Dueling true
¥ 0.99
Gradient clipping 10
Minibatch size 32
Algorithms | Statistics H=3 H=6 H=12 H =25 H =50 H =100
Max 00 00 00 00 00 00
PPO Median 00 %) 00 o0 00 00
Min 00 00 00 00 00 00
Max 1.69 x 10% 00 00 00 00 00
DQN Median 1.62 x 10% 00 00 00 00 00
Min 1.58 x 10% 00 00 00 00 00
Max 3.4 x10% | 9.3x10% | 3.07 x 10° | 2.27 x 10° 00 %)
PPO +RND | Median 2.2 x10* | 3.9 x10* | 0.89 x 10° | 1.63 x 10 00 00
Min 2 x 104 3.3x10* | 0.2x10% | 0.63 x 105 | 3.3 x 106)
Max 00 00 00 00 00 00
PCID2019 Median 00 %) 00 %) 00 %)
Min 00 00 00 00 00 00
Max 9.3 x 10* [0.19 x 10° | 0.38 x 10° | 0.81 x 10° | 1.64 x 10° | 6.55 x 10°
HOMER Median 9.2 x 10* | 0.19 x 10° | 0.37 x 10° | 0.8 x 10% | 1.64 x 10¢ | 6.54 x 10°
Min 9.1 x 10* | 0.18 x 10% | 0.37 x 105 | 0.78 x 105 | 1.63 x 10° | 6.53 x 10°

Table 7: Details of execution for each algorithm and horizon (H). The action space size is always 10. We run the algorithm
5 times with different seeds for every hyperparameter setting. We compute the number of episodes needed to achieve a
mean return of V(7*)/2. If the algorithm fails to achieve this in 107 episodes then we report the result as oo denoting timeout.
We report the median, min and max performance over different seeds corresponding to the best hyperparameter setting.

Additional Results

Results with error margin We show the results on the diabolical combination lock with error margins in Table 7.

Visitation Probabilities We visualize the visitation probabilities in Figure 7. We compare the performance of HOMER against
the best baseline PPO + RND. For this experiment, we run PPO + RND on the setting H = 100 even though it failed for
shorter horizons. The results show that HOMER maintains good coverage over every state unlike PPO + RND.

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

PPO + RND (fails to explore from time step 28)

©000
000000000000000000000000000000
00000000000000000000000000000

©0 0000000000000 000
©000
©000

Figure 7: Visualization of the visitation probabilities for algorithms on the diabolical combination lock problem. The
top row, middle row and the bottom row represent states in {s5 o }1°%, {s5.5}:2% and {sp . }1%° respectively. The h'"
column represents states reachable at time step h. We do not show observations or transition edges for brevity. We sample
100, 000 episodes uniformly through the execution of the algorithm and compute the number of time count[s] the agent
visits a state s. The count statistics is shown using the opacity of the fill of each state. Formally, we set opacity of s as
o In(count[s] 4+ 1). The more opaque the circles are the more frequently the agent visits them. HOMER is able to explore

well for all time steps unlike the best baseline PPO + RND.

